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In di�erential geometry, two Lie groupoids G and G′ are said to be

Morita equivalent if there exists a manifold equipped with principal

right G and left G′ action. A quite easy example of a Lie groupoid

is the gauge (or Atiyah) groupoid associated to a principal bundle.

A Hopf algebroid is a dual object to a groupoid, in the same spirit

that Hopf algebras are dual to groups. A Morita theory for

commutative Hopf algebroids was developed by El Kaoutit and

Kowalzig (Doc. Math. 22, 551-609, 2017). In the noncommutative

case such a characterization has yet to be done, but the notion of

bibundle still makes sense in this context. Very brie�y, given two

Hopf algebroids L and L′, a (L,L′)-bibundle is a bicomodule

algebra such that the coactions are principal.
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Our goal here is to prove the following Lie groupoids result in the

Hopf context

Theorem

Let G be a Lie groupoid. Then the following are equivalent:

1 G is Morita equivalent to a Lie group.

2 G is isomorphic to the gauge groupoid associated to a

principal bundle.
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Let K be a �eld and ⊗ := ⊗K. Throughout the slides H denotes a

Hopf algebra with coalgebra structure (∆, ε) and antipode S that is

always assumed to be invertible.

We use the Sweedler notation for the coproduct

∆(h) = h(1) ⊗ h(2), h ∈ H

A (right) H-comodule algebra A is an algebra equipped with a

coaction

ρ : A −→ A⊗ H, a 7−→ a(0) ⊗ a(1)

that is an algebra morphism compatible with the coalgebra

structure of H.
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The space of coaction invariant elements

AcoH := {a ∈ A|ρ(a) = a⊗ 1H}

is a subalgebra of A.

The algebra extension AcoH ⊆ A is said to be

H-Hopf-Galois if the canonical map

can : A⊗AcoH A −→ A⊗ H, a⊗AcoH ã 7−→ aã(0) ⊗ ã(1)

is bijective.

We focus on extensions such that A is a faithfully �at

AcoH -module. We recall that this means that the functor −⊗AcoH A
preserves and re�exes exact sequences.
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Denote byM
AcoH the category of right AcoH -modules andMH

A the

category of right A-module with compatible right H-comodule

structure.

Faithfully �at extensions are characterizes by the

following

Theorem (Schneider's theorem)

Let H be a Hopf algebra with bijective antipode, then the following

are equivalent:

1 The functor −⊗AcoH A :MAcoH −→MH
A is an equivalence.

2 The functor A⊗AcoH − : M
AcoH −→ MH

A is an equivalence.

3 can is bijective.

A is faithfully �at as a left AcoH -module.

4 can is bijective.

A is faithfully �at as a right AcoH -module.
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The adjoint functor of −⊗AcoH A is given by V 7−→ V coH with

V ∈MH
A . So for faithfully �at Hopf-Galois extensions we have the

following isomorphism

(M ⊗AcoH A)coH ' M, V coH ⊗AcoH A ' V

for all M ∈M
AcoH and V ∈MH

A .
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Let now B be an algebra and Be := B ⊗ Bop. A Be-ring is a triple

(U, s, t) where U is an algebra and

s : B −→ U, t : Bop −→ U

are algebra morphisms with commuting ranges. In this way it is

de�ned a B-bimodule structure on U via

bub′ := s(b)t(b′)u, b, b′ ∈ B, u ∈ U

A B-coring is a triple (V ,∆, ε) where V is a B-bimodule and

∆ : V −→ V ⊗B V , ε : V −→ B

are B-bimodule morphisms de�ning a (coassociative) coproduct

and counit on V .



Introduction Preliminaries Hopf algebroids and bibundles A Morita equivalence result

Let now B be an algebra and Be := B ⊗ Bop. A Be-ring is a triple

(U, s, t) where U is an algebra and

s : B −→ U, t : Bop −→ U

are algebra morphisms with commuting ranges. In this way it is

de�ned a B-bimodule structure on U via

bub′ := s(b)t(b′)u, b, b′ ∈ B, u ∈ U

A B-coring is a triple (V ,∆, ε) where V is a B-bimodule and

∆ : V −→ V ⊗B V , ε : V −→ B

are B-bimodule morphisms de�ning a (coassociative) coproduct

and counit on V .



Introduction Preliminaries Hopf algebroids and bibundles A Morita equivalence result

Now a (left) B-bialgebroid is a quintuple (L, s, t,∆, ε) where

(L, s, t) is a Be-ring. We denote by ⊗B the tensor product

associated to the B-bimodule structure.

(L,∆, ε) is a B-coring w.r.t. the B-bimodule structure

inherited from the Be-ring structure.

The coproduct ∆ is an algebra morphism if corestricted to the

Takeuchi product

L×B L := {l⊗B l ′ ∈ L⊗B L|lt(b)⊗B l ′ = l⊗B l ′s(b),∀b ∈ B}

Moreover the counit ε is unital and satis�es an additional

requirement we do not use here.
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A (left) Hopf algebroid H is a B-bialgebroid L such that the

canonical map

β : H�Bop H −→ H⊗B H, h �Bop h′ 7−→ h(1) ⊗B h(2)h
′

is bijicetive.

Here the tensor product �Bop is induced by the

B-bimodule structure

bop · h · b′op := t(b)ht(b′), b ∈ B, h ∈ H.

Remark

In case B = K one has H is a bialgebra and this condition is

equivalent to the existence of the antipode making H a Hopf

algebra.
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A left H-comodule algebra is the datum of (P, α) where P is an

algebra and α : B −→ P an algebra morphism, together with a left

B-linear map

λ : P −→ H⊗B P, p 7−→ p(−1) ⊗B p(0)

de�ning a coaction such that its corestriction to H×B P is an

algebra morphism.

Via symmetry one de�nes right H-comodule algebras. A

(H,H′)-bicomodule algebra is a triple (P, α, α′) such that (P, α) ia

a left H-comodule algebra with right B ′-linear coaction λ, (P, α′) is
a right H′-comodule algebra with left B-linear coaction ρ such that

(idH ⊗B ρ) ◦ λ = (λ⊗B′ idH′) ◦ ρ
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A principal (H,H′)-bibundle is a (H,H′)-bicomodule algebra

(P, α, α′) such that the extension α and α′ are faithfully �at and

the canonical maps

canH : P ⊗B′ P −→ H⊗B P, p ⊗B′ p′ 7−→ p(−1) ⊗B p(0)p′

canH′ : P ⊗B P −→ P ⊗B′ H′, p ⊗B p′ 7−→ pp′(0) ⊗B′ p′(1)

are bijective.

When B = K = B ′ we retrive the notion of bi-Galois object

introduced by Schauenburg.

Remark

For two Lie groupoid G and G′ a principal bibundle is a manifold X
endowed with a left G-action and right G′-action that commute

and moreover the associated canonical maps are bijective. If a

bibundle exists G and G′ are said to be Morita equivalent.
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Attached to any faithfully �at Hopf-Galois extension AcoH ⊆ A we

have the Erhesmann-Schauenburg Hopf algebroid over

B := AcoH . As a vector space it is given by C(A,H) := (A⊗A)coH ,
where A⊗ A is a right H-comodule if endowed with

ρ⊗ : A⊗ A −→ A⊗ A⊗ H, a⊗ ã 7−→ a(0) ⊗ ã(0) ⊗ a(1)ã(1)

Let τ := can
−1|H : H −→ A⊗B A be the translation map, i.e.

τ(h) = 1A ⊗ h. The following map de�nes a left C(A,H)-comodule

algebra structure on A

λ : A −→ C(A,H)⊗B A, a 7−→ a(0) ⊗ τ(a(1)).

It is compatible with the right H-comodule algebra structure of A
and moreover the corresponding canonical map is bijective. Then A
is a principal (C(A,H),H)-bibundle.
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Let τ := can
−1|H : H −→ A⊗B A be the translation map, i.e.

τ(h) = 1A ⊗ h. The following map de�nes a left C(A,H)-comodule

algebra structure on A

λ : A −→ C(A,H)⊗B A, a 7−→ a(0) ⊗ τ(a(1)).

It is compatible with the right H-comodule algebra structure of A
and moreover the corresponding canonical map is bijective. Then A
is a principal (C(A,H),H)-bibundle.



Introduction Preliminaries Hopf algebroids and bibundles A Morita equivalence result

Attached to any faithfully �at Hopf-Galois extension AcoH ⊆ A we

have the Erhesmann-Schauenburg Hopf algebroid over

B := AcoH . As a vector space it is given by C(A,H) := (A⊗A)coH ,
where A⊗ A is a right H-comodule if endowed with

ρ⊗ : A⊗ A −→ A⊗ A⊗ H, a⊗ ã 7−→ a(0) ⊗ ã(0) ⊗ a(1)ã(1)
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On the other hand, if we have a left Hopf B-algebroid L adimitting

a (L,H)-bibundle A where H is a Hopf algebra, then L ' C(A,H).

This is a consequence of the universal property of C(A,H), for any
right B-module V one has the isomorphism

MH(A,V ⊗B A) 'MB(C(A,H),V )

Now let L be a B-bialgebroid such that A is a (L,H)-bibundle with
coaction δ : A −→ L⊗B A. Because of the above equivalence there
exists a unique right B-module map f : C(A,H) −→ L such that

λ = (f ⊗B idA) ◦ δ. One proves that f is a B-bialgebroid
morphism and by the principality of the coactions of both C(A,H)
and L on A concludes that is invertible since

canL = (f ⊗B idA) ◦ canC(A,H)
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Proposition

Let H be a Hopf algebra with bijictive antipode and L a Hopf

algebroid over an algebra B . Then the following are equivalent:

1 There exists a principal (L,H)-bibundle.

2 L is isomorphic to the Erhesmann-Schauenburg bialgebroid

associated to a faithfully �at H-Hopf-Galois extension.

Question: can we give the result in terms of category equivalences?

More precisely, is true that MH ' ML if and only if L ' C(A,H)?
One implication is true, namely if B ⊆ A is a faithfully �at

H-Hopf-Galois extension then A�H− : MH −→ ML is an

(monoidal) equivalence.
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One implication is true, namely if B ⊆ A is a faithfully �at

H-Hopf-Galois extension then A�H− : MH −→ ML is an

(monoidal) equivalence.
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Thank you!
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