Introduction 00	Preliminaries 0000	Hopf algebroids and bibundles	A Morita equivalence result 0000

Morita equivalence for the Erhesmann-Schauenburg Hopf algebroid

Jacopo Zanchettin (SISSA) Joint work with A. Chirvasitu (UB) and M. Tobolsky (Wroclaw Uni.)

Queen Mary University London (UK) Hopf Algebroids and Noncommutative Geometry

12 July 2023

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result

3 A Morita equivalence result

Introduction	Prelimin aries	Hopf algebroids and bibundles	A Morita equivalence result
●○	0000		0000

In differential geometry, two Lie groupoids \mathfrak{G} and \mathfrak{G}' are said to be Morita equivalent if there exists a manifold equipped with principal right \mathfrak{G} and left \mathfrak{G}' action. A quite easy example of a Lie groupoid is the gauge (or Atiyah) groupoid associated to a principal bundle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
●○	0000		0000

In differential geometry, two Lie groupoids \mathfrak{G} and \mathfrak{G}' are said to be Morita equivalent if there exists a manifold equipped with principal right \mathfrak{G} and left \mathfrak{G}' action. A quite easy example of a Lie groupoid is the gauge (or Ativah) groupoid associated to a principal bundle. A Hopf algebroid is a dual object to a groupoid, in the same spirit that Hopf algebras are dual to groups. A Morita theory for commutative Hopf algebroids was developed by El Kaoutit and Kowalzig (Doc. Math. 22, 551-609, 2017). In the noncommutative case such a characterization has yet to be done, but the notion of bibundle still makes sense in this context. Very briefly, given two Hopf algebroids \mathcal{L} and \mathcal{L}' , a $(\mathcal{L}, \mathcal{L}')$ -bibundle is a bicomodule algebra such that the coactions are principal.

Introduction ⊙●	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result

Our goal here is to prove the following Lie groupoids result in the Hopf context

Theorem

Let \mathfrak{G} be a Lie groupoid. Then the following are equivalent:

- **1** If the sequivalent to a Lie group.
- Is isomorphic to the gauge groupoid associated to a principal bundle.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	●000		0000

Let \mathbb{K} be a field and $\otimes := \otimes_{\mathbb{K}}$. Throughout the slides H denotes a Hopf algebra with coalgebra structure (Δ, ϵ) and antipode S that is always assumed to be invertible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

l n tr o du ction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	●000		0000

Let \mathbb{K} be a field and $\otimes := \otimes_{\mathbb{K}}$. Throughout the slides H denotes a Hopf algebra with coalgebra structure (Δ, ϵ) and antipode S that is always assumed to be invertible.

We use the Sweedler notation for the coproduct

$$\Delta(h) = h_{(1)} \otimes h_{(2)}, \quad h \in H$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

l ntroduction 00	Preliminaries ●000	Hopf algebroids and bibundles	A Morita equivalence result

Let \mathbb{K} be a field and $\otimes := \otimes_{\mathbb{K}}$. Throughout the slides H denotes a Hopf algebra with coalgebra structure (Δ, ϵ) and antipode S that is always assumed to be invertible.

We use the Sweedler notation for the coproduct

$$\Delta(h) = h_{(1)} \otimes h_{(2)}, \quad h \in H$$

A (right) H-comodule algebra A is an algebra equipped with a coaction

$$\rho: A \longrightarrow A \otimes H, \quad a \longmapsto a_{(0)} \otimes a_{(1)}$$

that is an algebra morphism compatible with the coalgebra structure of H.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0●00		0000

The space of coaction invariant elements

$$A^{coH} := \{a \in A | \rho(a) = a \otimes 1_H\}$$

is a subalgebra of A.

l ntroduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0●00		0000

The space of coaction invariant elements

$$A^{coH} := \{ a \in A | \rho(a) = a \otimes 1_H \}$$

is a subalgebra of A. The algebra extension $A^{coH} \subseteq A$ is said to be *H*-Hopf-Galois if the canonical map

$$\operatorname{can}: A \otimes_{A^{coH}} A \longrightarrow A \otimes H, \quad a \otimes_{A^{coH}} \tilde{a} \longmapsto a \tilde{a}_{(0)} \otimes \tilde{a}_{(1)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is bijective.

l ntroduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0●00		0000

The space of coaction invariant elements

$$A^{coH} := \{ a \in A |
ho(a) = a \otimes 1_H \}$$

is a subalgebra of A. The algebra extension $A^{coH} \subseteq A$ is said to be H-Hopf-Galois if the canonical map

$$\operatorname{can}: A \otimes_{A^{\operatorname{coH}}} A \longrightarrow A \otimes H, \quad a \otimes_{A^{\operatorname{coH}}} \tilde{a} \longmapsto a \tilde{a}_{(0)} \otimes \tilde{a}_{(1)}$$

is bijective.

We focus on extensions such that A is a faithfully flat A^{coH} -module. We recall that this means that the functor $-\otimes_{A^{coH}} A$ preserves and reflexes exact sequences.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	00●0		0000

Denote by $\mathcal{M}_{A^{coH}}$ the category of right A^{coH} -modules and \mathcal{M}_{A}^{H} the category of right A-module with compatible right H-comodule structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	00●0		0000

Denote by $\mathcal{M}_{A^{coH}}$ the category of right A^{coH} -modules and \mathcal{M}_{A}^{H} the category of right A-module with compatible right H-comodule structure. Faithfully flat extensions are characterizes by the following

Theorem (Schneider's theorem)

Let H be a Hopf algebra with bijective antipode, then the following are equivalent:

- - can is bijective.

- A is faithfully flat as a left A^{coH}-module.
- can is bijective.
 - A is faithfully flat as a right A^{coH}-module.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	000●		0000

The adjoint functor of $-\otimes_{A^{coH}} A$ is given by $V \longmapsto V^{coH}$ with $V \in \mathcal{M}_A^H$. So for faithfully flat Hopf-Galois extensions we have the following isomorphism

 $(M \otimes_{A^{coH}} A)^{coH} \simeq M, \quad V^{coH} \otimes_{A^{coH}} A \simeq V$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

for all $M \in \mathcal{M}_{A^{coH}}$ and $V \in \mathcal{M}_{A}^{H}$.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
		00000	

Let now B be an algebra and $B^e := B \otimes B^{op}$. A B^e -ring is a triple (U, s, t) where U is an algebra and

$$s: B \longrightarrow U, \quad t: B^{op} \longrightarrow U$$

are algebra morphisms with commuting ranges. In this way it is defined a B-bimodule structure on U via

$$bub' := s(b)t(b')u, \quad b, b' \in B, u \in U$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
		•0000	

Let now B be an algebra and $B^e := B \otimes B^{op}$. A B^e -ring is a triple (U, s, t) where U is an algebra and

$$s: B \longrightarrow U, \quad t: B^{op} \longrightarrow U$$

are algebra morphisms with commuting ranges. In this way it is defined a B-bimodule structure on U via

$$bub' := s(b)t(b')u, \quad b, b' \in B, u \in U$$

A *B*-coring is a triple (V, Δ, ϵ) where *V* is a *B*-bimodule and

$$\Delta: V \longrightarrow V \otimes_B V, \quad \epsilon: V \longrightarrow B$$

are B-bimodule morphisms defining a (coassociative) coproduct and counit on V.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	○●○○○	0000

• (\mathcal{L}, s, t) is a B^e -ring. We denote by \otimes_B the tensor product associated to the *B*-bimodule structure.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	○●○○○	0000

(L, s, t) is a B^e-ring. We denote by ⊗_B the tensor product associated to the B-bimodule structure.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

 (L, Δ, ε) is a B-coring w.r.t. the B-bimodule structure inherited from the B^e-ring structure.

l ntroduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	○●○○○	

- (\mathcal{L}, s, t) is a B^e -ring. We denote by \otimes_B the tensor product associated to the *B*-bimodule structure.
- (*L*, Δ, ε) is a *B*-coring w.r.t. the *B*-bimodule structure inherited from the *B^e*-ring structure.
- \bullet The coproduct Δ is an algebra morphism if corestricted to the Takeuchi product

 $\mathcal{L} \times_B \mathcal{L} := \{ I \otimes_B I' \in \mathcal{L} \otimes_B \mathcal{L} | It(b) \otimes_B I' = I \otimes_B I's(b), \forall b \in B \}$

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	○●○○○	0000

- (\mathcal{L}, s, t) is a B^e -ring. We denote by \otimes_B the tensor product associated to the *B*-bimodule structure.
- (*L*, Δ, ε) is a *B*-coring w.r.t. the *B*-bimodule structure inherited from the *B^e*-ring structure.
- \bullet The coproduct Δ is an algebra morphism if corestricted to the Takeuchi product

$$\mathcal{L} \times_B \mathcal{L} := \{ I \otimes_B I' \in \mathcal{L} \otimes_B \mathcal{L} | lt(b) \otimes_B I' = I \otimes_B I's(b), \forall b \in B \}$$

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

Moreover the counit ϵ is unital and satisfies an additional requirement we do not use here.

Introduction 00	Preliminaries 0000	Hopf algebroids and bibundles ००●००	A Morita equivalence result 0000

A (left) Hopf algebroid \mathcal{H} is a *B*-bialgebroid \mathcal{L} such that the canonical map

 $\beta: \mathcal{H} \odot_{B^{op}} \mathcal{H} \longrightarrow \mathcal{H} \otimes_B \mathcal{H}, \quad h \odot_{B^{op}} h' \longmapsto h_{(1)} \otimes_B h_{(2)} h'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is bijicetive.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	००●००	0000

A (left) Hopf algebroid ${\cal H}$ is a ${\it B}\mbox{-bialgebroid}\ {\cal L}$ such that the canonical map

$$\beta:\mathcal{H}\odot_{B^{op}}\mathcal{H}\longrightarrow\mathcal{H}\otimes_B\mathcal{H},\quad h\odot_{B^{op}}h'\longmapsto h_{(1)}\otimes_Bh_{(2)}h'$$

is bijicetive. Here the tensor product $\odot_{B^{op}}$ is induced by the B-bimodule structure

$$b^{op} \cdot h \cdot b'^{op} := t(b)ht(b'), \quad b \in B, h \in \mathcal{H}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	००●००	0000

A (left) Hopf algebroid \mathcal{H} is a *B*-bialgebroid \mathcal{L} such that the canonical map

$$eta:\mathcal{H}\odot_{B^{op}}\mathcal{H}\longrightarrow\mathcal{H}\otimes_B\mathcal{H},\quad h\odot_{B^{op}}h'\longmapsto h_{(1)}\otimes_Bh_{(2)}h'$$

is bijicetive. Here the tensor product $\odot_{B^{op}}$ is induced by the B-bimodule structure

$$b^{op} \cdot h \cdot b'^{op} := t(b)ht(b'), \quad b \in B, h \in \mathcal{H}.$$

Remark

In case $B = \mathbb{K}$ one has \mathcal{H} is a bialgebra and this condition is equivalent to the existence of the antipode making \mathcal{H} a Hopf algebra.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
		00000	

A left \mathcal{H} -comodule algebra is the datum of (P, α) where P is an algebra and $\alpha : B \longrightarrow P$ an algebra morphism, together with a left B-linear map

$$\lambda: P \longrightarrow \mathcal{H} \otimes_B P, \quad p \longmapsto p^{(-1)} \otimes_B p^{(0)}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

defining a coaction such that its corestriction to $\mathcal{H} \times_B P$ is an algebra morphism.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
		00000	

A left \mathcal{H} -comodule algebra is the datum of (P, α) where P is an algebra and $\alpha : B \longrightarrow P$ an algebra morphism, together with a left B-linear map

$$\lambda: P \longrightarrow \mathcal{H} \otimes_B P, \quad p \longmapsto p^{(-1)} \otimes_B p^{(0)}$$

defining a coaction such that its corestriction to $\mathcal{H} \times_B P$ is an algebra morphism.

Via symmetry one defines right \mathcal{H} -comodule algebras. A $(\mathcal{H}, \mathcal{H}')$ -bicomodule algebra is a triple (P, α, α') such that (P, α) ia a left \mathcal{H} -comodule algebra with right B'-linear coaction λ , (P, α') is a right \mathcal{H}' -comodule algebra with left B-linear coaction ρ such that

$$(\mathrm{id}_{\mathcal{H}} \otimes_{\mathcal{B}} \rho) \circ \lambda = (\lambda \otimes_{\mathcal{B}'} \mathrm{id}_{\mathcal{H}'}) \circ \rho$$

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	00000	0000

A principal $(\mathcal{H}, \mathcal{H}')$ -bibundle is a $(\mathcal{H}, \mathcal{H}')$ -bicomodule algebra (P, α, α') such that the extension α and α' are faithfully flat and the canonical maps

$$\operatorname{can}_{\mathcal{H}}: P \otimes_{B'} P \longrightarrow \mathcal{H} \otimes_{B} P, \quad p \otimes_{B'} p' \longmapsto p^{(-1)} \otimes_{B} p^{(0)} p'$$
$$\operatorname{can}_{\mathcal{H}'}: P \otimes_{B} P \longrightarrow P \otimes_{B'} \mathcal{H}', \quad p \otimes_{B} p' \longmapsto pp'_{(0)} \otimes_{B'} p'_{(1)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

are bijective.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	00000	0000

A principal $(\mathcal{H}, \mathcal{H}')$ -bibundle is a $(\mathcal{H}, \mathcal{H}')$ -bicomodule algebra (P, α, α') such that the extension α and α' are faithfully flat and the canonical maps

$$\operatorname{can}_{\mathcal{H}}: P \otimes_{B'} P \longrightarrow \mathcal{H} \otimes_{B} P, \quad p \otimes_{B'} p' \longmapsto p^{(-1)} \otimes_{B} p^{(0)} p'$$
$$\operatorname{can}_{\mathcal{H}'}: P \otimes_{B} P \longrightarrow P \otimes_{B'} \mathcal{H}', \quad p \otimes_{B} p' \longmapsto pp'_{(0)} \otimes_{B'} p'_{(1)}$$

are bijective. When $B = \mathbb{K} = B'$ we retrive the notion of bi-Galois object introduced by Schauenburg.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	00000	0000

A principal $(\mathcal{H}, \mathcal{H}')$ -bibundle is a $(\mathcal{H}, \mathcal{H}')$ -bicomodule algebra (P, α, α') such that the extension α and α' are faithfully flat and the canonical maps

$$\operatorname{can}_{\mathcal{H}}: P \otimes_{B'} P \longrightarrow \mathcal{H} \otimes_{B} P, \quad p \otimes_{B'} p' \longmapsto p^{(-1)} \otimes_{B} p^{(0)} p'$$
$$\operatorname{can}_{\mathcal{H}'}: P \otimes_{B} P \longrightarrow P \otimes_{B'} \mathcal{H}', \quad p \otimes_{B} p' \longmapsto pp'_{(0)} \otimes_{B'} p'_{(1)}$$

are bijective. When $B = \mathbb{K} = B'$ we retrive the notion of bi-Galois object introduced by Schauenburg.

Remark

For two Lie groupoid \mathfrak{G} and \mathfrak{G}' a principal bibundle is a manifold X endowed with a left \mathfrak{G} -action and right \mathfrak{G}' -action that commute and moreover the associated canonical maps are bijective. If a bibundle exists \mathfrak{G} and \mathfrak{G}' are said to be **Morita equivalent**.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		●000

Attached to any faithfully flat Hopf-Galois extension $A^{coH} \subseteq A$ we have the **Erhesmann-Schauenburg Hopf algebroid** over $B := A^{coH}$. As a vector space it is given by $C(A, H) := (A \otimes A)^{coH}$, where $A \otimes A$ is a right *H*-comodule if endowed with

 $\rho^{\otimes}: A \otimes A \longrightarrow A \otimes A \otimes H, \quad a \otimes \tilde{a} \longmapsto a_{(0)} \otimes \tilde{a}_{(0)} \otimes a_{(1)} \tilde{a}_{(1)}$

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		●000

Attached to any faithfully flat Hopf-Galois extension $A^{coH} \subseteq A$ we have the **Erhesmann-Schauenburg Hopf algebroid** over $B := A^{coH}$. As a vector space it is given by $C(A, H) := (A \otimes A)^{coH}$, where $A \otimes A$ is a right *H*-comodule if endowed with

$$\rho^{\otimes}: A \otimes A \longrightarrow A \otimes A \otimes H, \quad a \otimes \tilde{a} \longmapsto a_{(0)} \otimes \tilde{a}_{(0)} \otimes a_{(1)} \tilde{a}_{(1)}$$

Let $\tau := \operatorname{can}^{-1}|_H : H \longrightarrow A \otimes_B A$ be the translation map, i.e. $\tau(h) = 1_A \otimes h$. The following map defines a left $\mathcal{C}(A, H)$ -comodule algebra structure on A

$$\lambda : A \longrightarrow \mathcal{C}(A, H) \otimes_B A, \quad a \longmapsto a_{(0)} \otimes \tau(a_{(1)}).$$

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		●000

Attached to any faithfully flat Hopf-Galois extension $A^{coH} \subseteq A$ we have the **Erhesmann-Schauenburg Hopf algebroid** over $B := A^{coH}$. As a vector space it is given by $C(A, H) := (A \otimes A)^{coH}$, where $A \otimes A$ is a right *H*-comodule if endowed with

$$\rho^{\otimes}: A \otimes A \longrightarrow A \otimes A \otimes H, \quad a \otimes \tilde{a} \longmapsto a_{(0)} \otimes \tilde{a}_{(0)} \otimes a_{(1)} \tilde{a}_{(1)}$$

Let $\tau := \operatorname{can}^{-1}|_H : H \longrightarrow A \otimes_B A$ be the translation map, i.e. $\tau(h) = 1_A \otimes h$. The following map defines a left $\mathcal{C}(A, H)$ -comodule algebra structure on A

$$\lambda : A \longrightarrow \mathcal{C}(A, H) \otimes_B A, \quad a \longmapsto a_{(0)} \otimes \tau(a_{(1)}).$$

It is compatible with the right *H*-comodule algebra structure of *A* and moreover the corresponding canonical map is bijective. Then *A* is a principal $(\mathcal{C}(A, H), H)$ -bibundle.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		⊙●○○

On the other hand, if we have a left Hopf *B*-algebroid \mathcal{L} adimitting a (\mathcal{L}, H) -bibundle *A* where *H* is a Hopf algebra, then $\mathcal{L} \simeq \mathcal{C}(A, H)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

l ntroduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		⊙●○○

On the other hand, if we have a left Hopf *B*-algebroid \mathcal{L} adimitting a (\mathcal{L}, H) -bibundle *A* where *H* is a Hopf algebra, then $\mathcal{L} \simeq \mathcal{C}(A, H)$. This is a consequence of the universal property of $\mathcal{C}(A, H)$, for any right *B*-module *V* one has the isomorphism

 $\mathcal{M}^{H}(A, V \otimes_{B} A) \simeq \mathcal{M}_{B}(\mathcal{C}(A, H), V)$

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		0●00

On the other hand, if we have a left Hopf *B*-algebroid \mathcal{L} adimitting a (\mathcal{L}, H) -bibundle *A* where *H* is a Hopf algebra, then $\mathcal{L} \simeq \mathcal{C}(A, H)$. This is a consequence of the universal property of $\mathcal{C}(A, H)$, for any right *B*-module *V* one has the isomorphism

 $\mathcal{M}^{H}(A, V \otimes_{B} A) \simeq \mathcal{M}_{B}(\mathcal{C}(A, H), V)$

Now let \mathcal{L} be a *B*-bialgebroid such that *A* is a (\mathcal{L}, H) -bibundle with coaction $\delta : A \longrightarrow \mathcal{L} \otimes_B A$. Because of the above equivalence there exists a unique right *B*-module map $f : \mathcal{C}(A, H) \longrightarrow \mathcal{L}$ such that $\lambda = (f \otimes_B id_A) \circ \delta$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		⊙●○○

On the other hand, if we have a left Hopf *B*-algebroid \mathcal{L} adimitting a (\mathcal{L}, H) -bibundle *A* where *H* is a Hopf algebra, then $\mathcal{L} \simeq \mathcal{C}(A, H)$. This is a consequence of the universal property of $\mathcal{C}(A, H)$, for any right *B*-module *V* one has the isomorphism

 $\mathcal{M}^{H}(A, V \otimes_{B} A) \simeq \mathcal{M}_{B}(\mathcal{C}(A, H), V)$

Now let \mathcal{L} be a *B*-bialgebroid such that *A* is a (\mathcal{L}, H) -bibundle with coaction $\delta : A \longrightarrow \mathcal{L} \otimes_B A$. Because of the above equivalence there exists a unique right *B*-module map $f : \mathcal{C}(A, H) \longrightarrow \mathcal{L}$ such that $\lambda = (f \otimes_B \operatorname{id}_A) \circ \delta$. One proves that *f* is a *B*-bialgebroid morphism and by the principality of the coactions of both $\mathcal{C}(A, H)$ and \mathcal{L} on *A* concludes that is invertible since

$$\operatorname{can}_{\mathcal{L}} = (f \otimes_{\mathcal{B}} \operatorname{id}_{\mathcal{A}}) \circ \operatorname{can}_{\mathcal{C}(\mathcal{A},\mathcal{H})}$$

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	00000	00●0

Proposition

Let H be a Hopf algebra with bijictive antipode and \mathcal{L} a Hopf algebroid over an algebra B. Then the following are equivalent:

- **1** There exists a principal (\mathcal{L}, H) -bibundle.
- 2 L is isomorphic to the Erhesmann-Schauenburg bialgebroid associated to a faithfully flat H-Hopf-Galois extension.

I ntroduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	00000	00●0

Proposition

Let H be a Hopf algebra with bijictive antipode and \mathcal{L} a Hopf algebroid over an algebra B. Then the following are equivalent:

- **1** There exists a principal (\mathcal{L}, H) -bibundle.
- 2 L is isomorphic to the Erhesmann-Schauenburg bialgebroid associated to a faithfully flat H-Hopf-Galois extension.

Question: can we give the result in terms of category equivalences? More precisely, is true that ${}^{H}\mathcal{M} \simeq {}^{\mathcal{L}}\mathcal{M}$ if and only if $\mathcal{L} \simeq C(A, H)$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

I ntroduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000	00000	00●0

Proposition

Let H be a Hopf algebra with bijictive antipode and \mathcal{L} a Hopf algebroid over an algebra B. Then the following are equivalent:

- **1** There exists a principal (\mathcal{L}, H) -bibundle.
- 2 L is isomorphic to the Erhesmann-Schauenburg bialgebroid associated to a faithfully flat H-Hopf-Galois extension.

Question: can we give the result in terms of category equivalences? More precisely, is true that ${}^{H}\mathcal{M} \simeq {}^{\mathcal{L}}\mathcal{M}$ if and only if $\mathcal{L} \simeq \mathcal{C}(A, H)$? One implication is true, namely if $B \subseteq A$ is a faithfully flat H-Hopf-Galois extension then $A \Box_{H} - : {}^{H}\mathcal{M} \longrightarrow {}^{\mathcal{L}}\mathcal{M}$ is an (monoidal) equivalence.

Introduction	Preliminaries	Hopf algebroids and bibundles	A Morita equivalence result
00	0000		000●

Thank you!

(ロ)、(型)、(E)、(E)、 E) のQ()