Left Hopf algebroids, (quasi)-Frobenius algebras

Sophie Chemla

Sorbonne Université

London, July 2023

For Hopf algebra, the notion of integral was introduced by Sweedler (1969) and Larson-Sweedler (1969) proved their theorem for Hopf modules.

What is a Hopf algebra over a non necessarily basis?

- Hopf algebroids in the sense of Böhm (Lu, Böhm-Szlachanyi, etc...): An antipode is assumed to exist. Integral theory was studied by Böhm (2005).
- \times_A -Hopf algebras (in the sense of Schauenburg) or left Hopf algebroids. An antipode is not required to exist but for any element h, the element $h_{(1)} \otimes S(h_2)$. Can be seen as Hopf monads and integral theory was developed by Bruguières-Virelizier (2007).

Hopf algebroids are left Hopf algebroids but the converse is not true in general (see Krähmer-Rovi 2015).

We will extend some results of Böhm to left Hopf algebroids thanks to a recent result of Schauenburg (explicit formulas given by Kowalzig). We will characterize left Hopf algebroids that are a (quasi)-Frobenius extension of their basis.

Many author have studied relations between Hopf algebras and Frobenius algebras: Pareigis, Böhm-Nill-Szlachányi, Böhm, Iovanov-Kadison, Balan, Saracco, etc...

- *k* will be a field and *A* will be a *k*-algebra with unit. Unadorned tensor products are tensor products over *k*.
- An A-ring (H, μ, η) is a monoid in the monoidal category $(A^e\text{-Mod}, \otimes_A, A)$ of $A^e\text{-modules}$ fulfilling the associativity and the unitarity conditions.
- (Bohm) A-rings H correspond bijectively to k-algebra homomorphisms $\iota:A\longrightarrow H$. An A-ring H is endowed with an A^e -module structure:

$$\forall h \in H$$
, $a, b \in H$, $a \cdot h \cdot b = \iota(a)h\iota(b)$.

• An A-coring C is a comonoid in the monoidal category of A^e -modules satisfying the coassociativity and the counitarity conditions. As usual, we adopt Sweedler's Σ -notation $\Delta(c)=c_{(1)}\otimes c_{(2)}$ or $\Delta(c)=c^{(1)}\otimes c^{(2)}$ for $c\in C$.

For an $A^e=A\otimes A^{op}$ -ring U given by the k-algebra morphism $\eta:A^e\to U$, consider the restrictions

$$s := \eta(-\otimes 1_U) : A \to U \text{ and } t := \eta(1_U \otimes -) : A^{op} \to U,$$

called *source* and *target* map, respectively. Thus an A^e -ring U carries two A-module structures from the left and two from the right, namely

$$a \triangleright u \triangleleft b := s(a)t(b)u, \qquad a \blacktriangleright u \blacktriangleleft b := ut(a)s(b), \ \forall \ a,b \in A, u \in U.$$

If we let $U_{\triangleleft} \otimes_{_{A}\triangleright} U$ be the corresponding tensor product of U (as an A^e -module) with itself, we define the *(left) Takeuchi-Sweedler product* as

$$U_{\triangleleft} \times_{A \triangleright} U := \left\{ \sum_{i} u_{i} \otimes u'_{i} \in U_{\triangleleft} \otimes_{A \triangleright} U \mid \sum_{i} (a \triangleright u_{i}) \otimes u'_{i} = \sum_{i} u_{i} \otimes (u'_{i} \triangleleft a), \ \forall a \in A \right\}$$

$$(0.1)$$

By construction, $U_{\triangleleft} \times_{A \triangleright} U$ is an A^{e} -submodule of $U_{\triangleleft} \otimes_{A \triangleright} U$; it is also an A^{e} -ring via factorwise multiplication, with unit $1_{U} \otimes 1_{U}$ and $\eta_{U_{a} \times_{A \triangleright} U}(a \otimes \tilde{a}) := s(a) \otimes t(\tilde{a})$.

4 D > 4 D > 4 E > 4 E > E 990

For an $A^e = A \otimes A^{op}$ -ring U given by the k-algebra morphism $\eta: A^e \to U$, consider the restrictions

$$s := \eta(-\otimes 1_{\upsilon}) : A \to U \text{ and } t := \eta(1_{\upsilon} \otimes -) : A^{op} \to U,$$

called source and target map, respectively. Thus an A^e -ring U carries two A-module structures from the left and two from the right, namely

$$a \triangleright u \triangleleft b := s(a)t(b)u, \qquad a \blacktriangleright u \blacktriangleleft b := ut(a)s(b), \ \forall \ a,b \in A, u \in U.$$

If we let $U_{\triangleleft} \otimes_{A \triangleright} U$ be the corresponding tensor product of U (as an A^e-module) with itself, we define the (left) Takeuchi-Sweedler product as

$$U_{\triangleleft} \times_{A \triangleright} U := \left\{ \sum_{i} u_{i} \otimes u'_{i} \in U_{\triangleleft} \otimes_{A \triangleright} U \mid \sum_{i} (a \triangleright u_{i}) \otimes u'_{i} = \sum_{i} u_{i} \otimes (u'_{i} \triangleleft a), \ \forall a \in A \right\}$$

$$(0.1)$$

By construction, $U_{\triangleleft} \times_{A \triangleright} U$ is an A^{e} -submodule of $U_{\triangleleft} \otimes_{A \triangleright} U$; it is also an A^e -ring via factorwise multiplication, with unit $1_U \otimes 1_U$ and $\eta_{U_{a\times A}\cup U}(a\otimes \tilde{a}):=s(a)\otimes t(\tilde{a}).$

Can also define the right Takeuchi-Sweedler product as $U_{\bullet} \times_{A} U_{\bullet}$, which is an A^e -ring inside $U_{\bullet} \otimes_{A} U$.

Left Hopf algebroid-(quasi)-Frobenius

200

(Takeuchi) A *left bialgebroid* (U,A) is a k-module U with the structure of an A^{e} -ring (U,s^{ℓ},t^{ℓ}) and an A-coring $(U,\Delta_{\ell},\epsilon)$ subject to the following compatibility relations:

- ① the A^{e} -module structure on the A-coring U is that of $_{\triangleright}U_{\triangleleft}$;
- ② the coproduct Δ_{ℓ} is a unital k-algebra morphism taking values in $U_{\triangleleft} \times_{A \triangleright} U$;

$$\epsilon(a \triangleright u \triangleleft b) = a\epsilon(u)b, \ \epsilon(uu') = \epsilon\big(u \blacktriangleleft \epsilon(u')\big) = \epsilon\big(\epsilon(u') \blacktriangleright u\big). \ \ (0.2)$$

A morphism between left bialgebroids (U,A) and (U',A') is a pair (F,f) of maps $F:U\to U', f:A\to A'$ that commute with all structure maps in an obvious way.

Remark

Szlachànyi has shown that left bialgebroids may be interpreted in terms of bimonads.

A *morphism* between left bialgebroids (U,A) and (U',A') is a pair (F,f) of maps $F:U\to U'$, $f:A\to A'$ that commute with all structure maps in an obvious way.

Remark

Szlachànyi has shown that left bialgebroids may be interpreted in terms of bimonads.

The notion of a *right bialgebroid* is obtained from that of *left bialgebroid* exchanging the role of $\triangleright, \triangleleft$ and $\blacktriangleright, \blacktriangleleft$. Then one starts with the $A^{\rm e}$ -module structure given by \blacktriangleright and \blacktriangleleft instead of \triangleright and \triangleleft and the coproduct takes values in $U_{\blacktriangleleft} \times_A {}_{\blacktriangleright} U$ instead of $U_{\triangleleft} \times_A {}_{\blacktriangleright} U$. We refer to Kadison-Szlachanyi for details.

Remark

The *opposite* of a left bialgebroid $(U, A, s^{\ell}, t^{\ell}, \Delta_{\ell}, \epsilon)$ yields a *right* bialgebroid $(U^{\mathrm{op}}, A, t^{\ell}, s^{\ell}, \Delta_{\ell}, \epsilon)$. The *coopposite* of a left bialgebroid is the *left* bialgebroid given by $(U, A^{\mathrm{op}}, t^{\ell}, s^{\ell}, \Delta_{\ell}^{\mathrm{coop}}, \epsilon)$.

(Schauenburg) A left bialgebroid U is called a *left Hopf algebroid* or \times_A *Hopf algebra* if the Hopf Galois map α_ℓ

$$\alpha_\ell: {}_{\blacktriangleright}U \otimes_{{}_{\!A^{\operatorname{op}}}} U_{{}^{\triangleleft}} \ \to \ U_{{}^{\triangleleft}} \otimes_{{}_{\!A}} {}_{\flat}U, \quad u \otimes_{{}_{\!A^{\operatorname{op}}}} v \ \mapsto \ u_{(1)} \otimes_{{}_{\!A}} u_{(2)}v,$$

is a bijection. We adopt for all $u \in U$ the following (Sweedler-like) notation

$$u_{+} \otimes_{A^{\mathrm{op}}} u_{-} := \alpha_{\ell}^{-1}(u \otimes_{A} 1)$$
 (0.3)

and the map $u \mapsto u_+ \otimes_{A^{op}} u_-$ is called the *translation maps*.

Example

If A = k, U is a left Hopf algebroid if and only if U is a Hopf algebra and $u_+ \otimes u_- = u_{(1)} \otimes S(u_{(2)})$.

Likewise, U is called a *left opHopf algebroid* if the Galois map α_r is a bijection.

$$\alpha_r: \ \textit{U}_{\!\scriptscriptstyle \bullet} \otimes^{\!\scriptscriptstyle A}_{\scriptscriptstyle \; \triangleright} U \quad \to \quad \textit{U}_{\!\scriptscriptstyle \triangleleft} \otimes_{\!\scriptscriptstyle A}_{\scriptscriptstyle \; \triangleright} U_{\!\scriptscriptstyle ,} \quad u \otimes^{\!\scriptscriptstyle A} v \quad \mapsto \quad u_{(1)} v \otimes_{\!\scriptscriptstyle A} u_{(2)}.$$

We set

$$u_{[+]} \otimes^{\mathsf{A}} u_{[-]} := \alpha_r^{-1} (1 \otimes_{\mathsf{A}} u),$$
 (0.4)

and the map $u \mapsto u_{\lceil + \rceil} \otimes^{\scriptscriptstyle A} u_{\lceil - \rceil}$ is called *translation maps*.

Likewise, U is called a *left opHopf algebroid* if the Galois map α_r is a bijection.

$$\alpha_r: \ \textit{$U_{\!\scriptscriptstyle 4}} \otimes^{\scriptscriptstyle A}{}_{\scriptscriptstyle \triangleright} U \quad \to \quad \textit{$U_{\!\scriptscriptstyle 4}} \otimes_{\scriptscriptstyle A}{}_{\scriptscriptstyle \triangleright} U, \quad u \otimes^{\scriptscriptstyle A} v \quad \mapsto \quad u_{(1)} v \otimes_{\scriptscriptstyle A} u_{(2)}.$$

We set

$$u_{[+]} \otimes^{\mathsf{A}} u_{[-]} := \alpha_r^{-1} (1 \otimes_{\mathsf{A}} u),$$
 (0.4)

and the map $u \mapsto u_{\lceil + \rceil} \otimes^{\scriptscriptstyle A} u_{\lceil - \rceil}$ is called *translation maps*.

Example

If A = k, U is a left opHopf algebroid if and only if U_{coop} is a Hopf algebra and $u_{[+]} \otimes u_{[-]} = u_{(2)} \otimes S^{-1}(u_{(1)})$.

Let W be a right B-bialgebroid. Then W is called a right Hopf algebroid (=RHB), respectively a right opHopf algebroid (=RopHB) if the Galois maps β_r , resp. β_ℓ , is a bijection.

$$\beta_{\ell}: W_{\triangleleft} \otimes_{B} W \to W_{\triangleleft} \otimes_{B} W, \quad w \otimes y \mapsto yw^{(1)} \otimes w^{(2)},$$
$$\beta_{r}: W_{B^{op}} W_{\triangleleft} \to W_{\triangleleft} W_{\triangleleft} W, \quad w \otimes y \mapsto w^{(1)} \otimes y w^{(2)}.$$

In either case, we adopt the following (Sweedler-like) notation:

$$w^{-} \otimes w^{+} := \beta_{r}^{-1}(w \otimes 1), \qquad w^{[-]} \otimes w^{[+]} := \beta_{l}^{-1}(1 \otimes w), \ \forall \ w \in W,$$

for the translation maps.

4 D > 4 D > 4 E > 4 E > E = 990

The example provide by Lie Rinehart algebras In this example A will be a commutative k-algebra. The vector space of derivations of A, Der(A), is endowed with a natural A-module structure.

Definition

(Rinehart 1962) A Lie Rinehart algebra (or Lie algebroid) over A is a triple $(L,[-,-],\rho)$ where

- \circ $[-,-]: L \times L \rightarrow L$ is a k-Lie algebra
- L is a (finitely generated projective) A-module
- $\rho: L \to Der(A)$ (the anchor) is an A-module morphism and a Lie algebra morphism.
- $\bullet \ \forall X, Y \in L, \quad \forall a \in A,$

$$[X, aY] = \rho(X)(a)Y + a[X, Y].$$

(ロ) (部) (注) (注) 注 り(0)

Examples

Example 1: L = Der(A) and $\rho = id$.

Example 2 : A = k. Then $\rho = 0$ and L is a k-Lie algebra.

Examples

Example 1: L = Der(A) and $\rho = id$.

Example 2 : A = k. Then $\rho = 0$ and L is a k-Lie algebra.

Example 3: $(M, \{-, -\})$ is a Poisson manifold with Poisson bivector $\pi \in \Gamma(M, \wedge^2 TM)$, the $A = \mathcal{C}^{\infty}(M)$ -module of global differential one forms $\Gamma(T^*M)$ is endowed with a Lie Rinehart algebra structure over A as follows :

- The anchor $\rho: \Gamma(T^*M) \to \Gamma(TM)$ is the map defined by π .
- If ω_1 and ω_2 are two global one forms

$$[\omega_1, \omega_2] = L_{\pi^{\sharp}(\omega_1)}(\omega_2) - L_{\pi^{\sharp}(\omega_2)}(\omega_1) + \pi(\omega_1, \omega_2).$$

More algebraically: For any $a, b, u, v \in A$,

4 D > 4 A > 4 B > 4 B > B = 90 9 C

To a Lie Rinehart algebra is associated its enveloping algebra

$$U_A(L) = \frac{T_k^+(A \oplus L)}{J}$$

where J is the two sided ideal generated by the relations: For all $a, b \in A$, for all $D, \Delta \in L$,

- $\mathbf{1} \quad a \otimes b ab$

- \bullet $a \otimes D aD$

Examples

- ① If A = k, L is a Lie algebra and we recover the enveloping algebra of a Lie algebra.
- ② If M is a \mathcal{C}^{∞} -manifold and $L = \Gamma(TM)$ the enveloping algebra of the Lie Rinehart algebra $(\Gamma(TM), id)$ is the algebra of globally defined differential operators.

(Rinehart 1962) PBW theorem holds for $U_A(L)$ if the A-module L is projective.

If L is a k-A- Lie Rinehart algebra, $U_A(L)$ is endowed with a standard left bialgebroid structure as follows (Xu):

- ① For all $a \in A$, $s^{\ell}(a) = t^{\ell}(a) = a$
- ② The coproduct Δ is defined by

$$\forall a \in A, \quad \Delta(a) = a \otimes 1, \qquad \forall D \in L, \quad \Delta(D) = D \otimes 1 + 1 \otimes D$$

3 $\epsilon(D) = 0$ and $\epsilon(a) = a$.

Moreover, $U_A(L)$ is a left Hopf algebroid. The translation maps is determined by the equalities: For all $a \in A$ and all $D \in L$.

$$a_{+} \otimes a_{-} = a \otimes 1$$

 $D_{+} \otimes D_{-} = D \otimes 1 - 1 \otimes D.$

As $U_A(L)$ is cocommutative, it is also (op)Hopf.

If L is a k-A- Lie Rinehart algebra, $U_A(L)$ is endowed with a standard left bialgebroid structure as follows (Xu):

- ① For all $a \in A$, $s^{\ell}(a) = t^{\ell}(a) = a$
- ② The coproduct Δ is defined by

$$\forall a \in A, \quad \Delta(a) = a \otimes 1, \qquad \forall D \in L, \quad \Delta(D) = D \otimes 1 + 1 \otimes D$$

3 $\epsilon(D) = 0$ and $\epsilon(a) = a$.

Moreover, $U_A(L)$ is a left Hopf algebroid. The translation maps is determined by the equalities: For all $a \in A$ and all $D \in L$.

$$a_{+} \otimes a_{-} = a \otimes 1$$

 $D_{+} \otimes D_{-} = D \otimes 1 - 1 \otimes D.$

As $U_A(L)$ is cocommutative, it is also (op)Hopf. If L is projective, $U_A(L)$ satisfies the PBW theorem (see Rinehart) . It is a projective A-module but not finitely generated. To get a finitely generated projective left Hopf algebroid, one can take k of characteristic p and take the restricted enveloping algebra $U_A'(L)$. Let (U, A) be a left bialgebroid. We set

$$U_* := \operatorname{\mathsf{Hom}}_{A}({}_{\triangleright}U, A) \text{ and } U^* := \operatorname{\mathsf{Hom}}_{A^{\operatorname{op}}}(U_{\triangleleft}, A),$$

called, respectively, the *left* and right dual of U.

The two dual are endowed with an A^e -ring structure, and even a right bialgebroid structure under finiteness and projectiveness conditions (Kadison-Szlachanyi).

The case of U^* :

For $a \in A$, let us introduce the two elements $s_r^*(a)$ and $t_r^*(a)$ of U^* defined by

$$\forall u \in U, \quad < t_r^*(a), u > = a < \epsilon, u >, \quad < s_r^*(a), u > = < \epsilon, us^{\ell}(a) > .$$
(0.5)

Endowed with the following multiplication, U^* is an associative k-algebra with unit ϵ : For all $\phi, \phi' \in U^*$ and all $u \in U$

$$\langle u, \phi \phi' \rangle = \langle s^{\ell}(\langle u_{(1)}, \phi \rangle) u_{(2)}, \phi' \rangle$$
 (0.6)

Then $s_r^*: A \to U^*$ and $t_r^*: A^{op} \to U^*$ are algebra morphisms and define an A^e -ring structure on U^* :

$$\phi \bullet a = \phi s_r^*(a)$$
 and $a \bullet \phi = \phi t_r^*(a)$.

The product on U^* can be written :

$$\langle u, \phi \phi' \rangle = \langle u_{(2)}, t_r^* (\langle u_{(1)}, \phi \rangle) \phi' \rangle$$
 (0.7)

If U_{\triangleleft} is a finite projective A^{op} -module, the following formula defines a coproduct on U^* :

$$\langle u u', \phi \rangle = \langle u t_{\ell}(\langle u', \phi_{(2)} \rangle), \phi_{(1)} \rangle = \langle u, \phi_{(1)} s_{r}^{*}(\langle u', \phi_{(2)} \rangle) \rangle$$

Lastly we have a counit $\eta \in U^*$

$$\langle 1, \phi \rangle = \eta(\phi)$$
 (0.8)

Thus $(U^*, A, s_r^*, t_r^*, \Delta, \eta)$ is a right bialgebroid.

If U_{\triangleleft} is a finite projective A^{op} -module, the following formula defines a coproduct on U^* :

$$\langle u u', \phi \rangle = \langle u t_{\ell}(\langle u', \phi_{(2)} \rangle), \phi_{(1)} \rangle = \langle u, \phi_{(1)} s_{r}^{*}(\langle u', \phi_{(2)} \rangle) \rangle$$

Lastly we have a counit $\eta \in U^*$

$$\langle 1, \phi \rangle = \eta(\phi)$$
 (0.8)

Thus $(U^*, A, s_r^*, t_r^*, \Delta, \eta)$ is a right bialgebroid.

The case of U_* : If $_{\triangleright}U$ is a finite projective *A*-module, U_* is endowed with the right bialgebroid structure over *A* such that $(U_{coop})_* = (U^*)_{coop}$.

Similarly, if W is a right bialgebroid over A, its left dual ${}_*W$ and its right dual ${}_*W$ are endowed with left bialgebroid structure over A.

Similarly, if W is a right bialgebroid over A, its left dual ${}_*W$ and its right dual ${}_*W$ are endowed with left bialgebroid structure over A.

Theorem

(Schauenburg (2017), explicit formulas by Kowalzig) If U is a left Hopf algebroid, then U^* (respectively U_*) is a right (op)Hopf algebroid.

Hopf modules

Left-left Hopf modules are the objects of study of the fundamental theorem for Hopf modules (Larson-Sweedler). The latter states that, if H is a k-Hopf algebra, there is an equivalence of categories between left-left Hopf modules and k-vecteor spaces. Left-left Hopf modules can be defined in the case of Hopf algebroids (in the sense of Böhm), in the framework of bimonads over a monoidal category (Bruguières-Virelizier) and in the context of Hopf categories (Batista-Caenepeel-Vercruysse). In all these cases, the Larson-Sweedler theorem for Hopf modules was proved. We will use only a part of this theorem that follows from a flat descent argument (due to Brzezinski).

- 1) Let $(W, B, s^r, t^r, \Delta, \partial)$ be a right bialgebroid over the k-algebra A. We will say that M is endowed with a right-right Hopf W-module structure if
 - (i) *M* is endowed with a right *W*-module structure.
 - (ii) M is endowed with a right W-comodule structure denoted Δ_M .
 - (iii) These two structures are linked by the following relation : for all $m \in M$, $w \in W$ and $b \in B$

$$m_{(0)}w_{(1)}\otimes m_{(1)}w_{(2)}=\Delta_M(mw).$$

(iv)
$$m \cdot b = ms^r(b)$$
.

2) Left left Hopf modules are defined over a left bialgebroid.

Example

If N is a right A-module, then $N \otimes_{A} W$ is a right right Hopf W-module as follows: For all $(w, v) \in W^2$ and all $n \in N$,

$$(n \otimes_{A} w) \cdot v = n \otimes_{A} wv$$
 and $\Delta_{P \otimes_A W} (n \otimes w) = n \otimes w_{(1)} \otimes w_{(2)}$

It follows from the fundamental theorem for Hopf modules (Larson-Sweedler for Hopf algebras, Böhm for Hopf algebroids, Bruguières-Virelizier for Hopf monads, Batista-Caenepeel-Vercrruysse for Hopf categories, etc...), that : if W is a right Hopf algebroid and under flatness conditions, all right right Hopf W-modules are of this type (up to isomorphisms).

Theorem

([C]) Let U be a left Hopf left bialgebroid such that U_{\triangleleft} is a finitely generated projective A^{op} -module, then U^* is a right Hopf algebroid with translation map

$$\phi \in U^* \mapsto \phi^- \otimes \phi^+ \in U^* \otimes_{A^{op}} U^*_{\triangleleft}.$$

If $\phi \in U^*$ and $u \in U$,

$$u \cdot \phi = \epsilon_r^{U^*} \left[t_r^* \left(< u, \psi \phi^- > \phi^+ \right) \right]$$

$$\Delta_U(u) = e_i u_{\triangleleft} \otimes_{A_{\bullet}} e_i^*$$

where (e_i, e_i^*) is the dual basis of the right finitely generated A^{op} -module U_a .

From the Larson-Sweedler theorem for Hopf modules, we deduce an isomorphism of right U^* -modules and right U^* -comodules

$$\begin{array}{cccc}
U^{cov} \otimes_A U^*_{\triangleleft} & \simeq & U \\
u_0 \otimes \phi & \mapsto & u_0 \cdot \phi
\end{array}$$

But $U^{cov}=\{u\in U,\ \forall v\in U,\ uv=s^{\ell}\epsilon(u)v\}$ is the A-module of left integrals of U.

Remark

Case of Hopf algebras (Larson-Sweedler), case of Hopf algebroid (Böhm).

Frobenius extensions

A monomorphism of k-algebras $s:A\to U$ defines an A^e -module structure on U: Forall $(a,b)\in A^2$, $u\in U$,

$$a \cdot u \cdot b = s(a)us(b).$$

As usual, $a \cdot u \cdot b$ will be denoted $a \triangleright u \blacktriangleleft b$. Recall that an A^e -module structure on U defines an A^e -module structure on U_* as follows : Forall $\psi \in U_*$, $a \in A$, $v \in U$,

$$a \triangleright \psi = s(a) \rightarrow \psi, \quad \langle \psi \triangleleft a, v \rangle = \langle \psi, v \rangle a.$$

It is also endowed with the left U-module structure given by the transpose of the right multiplication

$$\forall \psi \in U_*, \quad \forall (u, v) \in U^2, \quad (v \to \psi)(u) = \psi(uv).$$

(Karsch 1954) A monomorphism of k-algebras $s:A\to U$ is called a Frobenius extension if

- lacktriangle lacktriangle U is finitely generated and projective
- ② The $U \otimes A^{op}$ -modules ${}_{U}U_{\bullet}$ and $U_{*\bullet}$ are isomorphic

Proposition

([C]) Let $(U, A, s^{\ell}, t^{\ell}, \Delta^{\ell}, \epsilon)$ be a left Hopf algebroid such that the A^{op} -module U^*_{\triangleleft} is flat. The extension $t^{\ell}: A^{op} \to U$ is Frobenius if and only if

- ① U_{\triangleleft} is a finitely projective A^{op} -module
- ② $\int_{U}^{\ell} \int_{U}^{\ell} \int_$

The proof follows from the Larson-Sweedler theorem for Hopf modules.

Remarks

- ① If A = k is a field, the k-algebra U is Frobenius if and only if the monomorphism $k \to U$ is a Frobenius extension.
- 2 Pareigis showed that a A-Hopf algebra (with A commutative) satisfying the two conditions of the theorem is Frobenius.
- 3 Böhm : Case of Hopf algebroid:
- M.C. Iovanov and L. Kadison investigated when a weak Hopf algebra is Frobenius.
- ⑤ Morita showed that the monomorphism $s:A\to U$ is a Frobenius extension if and only if the restriction functor is a Frobenius functor.

(Muller 1971) Recall that an A^e -module structure on U defines an A^e -module structure on U_* as follows : For all $\psi \in U_*$, $a \in A, v \in U$,

$$a \cdot \psi = s(a) \rightarrow \psi, \quad <\psi \cdot a, v> = <\psi, v>a.$$

Endow U_* with the left U-module structure given by the transpose of the right multiplication

$$\forall \psi \in U_*, \quad \forall (u, v) \in U^2, \quad (v \to \psi)(u) = \psi(uv).$$

A monomorphism of k-algebras $s:A\to U$ is called quasi-Frobenius if

- ② The $U \otimes A^{op}$ -module $_UU_{\bullet}$ is a direct summand in a finite direct sum of copies of $U_{\bullet \bullet}$.

4 D > 4 D > 4 E > 4 E > E 990

Remarks

- ① Quasi-Frobenius functors were introduced by Iglesias-Nastasescu-Vercruysse (2010). The monomorphism s: A → U is a quasi-Frobenius extension if and only is the restriction functor is a quasi Frobenius functor.
- 2 Pareigis (1964) showed that a finitely generated projective Hopf algebra over a commutative ring is quasi-Frobenius.
- 3 Böhm-Nill-Szlachányi showed that weak Hopf algebras are quasi-Frobenius.

Proposition

([C]) Let $(U, A, s^{\ell}, t^{\ell})$ be a left Hopf algebroid such that the A^{op} -module U^*_{\triangleleft} is flat. The extension $t^{\ell}: A^{op} \to U$ is quasi-Frobenius if and only if

- ① U_{\triangleleft} is a finitely projective A^{op} -module
- \bigcirc , (\int_U^ℓ) is a finitely generated projective A-module.

In this section, we apply our theory to the restricted enveloping algebra of a restricted Lie-Rinehart algebra. We will assume that k is a field of characteristic p.

Definition

Let A be a commutative k-algebra and let $(A, L, (-)^{[-]}, \omega)$ be a restricted Lie-Rinehart algebra. The restricted universal enveloping algebra $U_A'(L) = \frac{U_A(L)}{< D^p - D^{[p]}}$. $D \in L >$

We set
$$J'(L) = [U_A(L')]^*$$
.

Examples

- ① If A = k, recover a restricted Lie algebra and its restricted enveloping algebra.
- ② If L = Der(A), recover the algebra of differential operators over A.

Proposition

Assume that L restricted Lie-Rinehart algebra which is is a finitely generated projective A-module with a rank. Set $J'_A(L) = [U_A(L)']^*$. Then $\int_{U'_A(L)}^\ell$ and $\int_{J'_A(L)}^\ell$ are projective A-module of rank one. Thus, $s^\ell: A \to U'_A(L)$, $s^r_*: A \to J'_A(L)$ and $t^r_*: A \to J'_A(L)$ are quasi-Frobenius extensions. They are Frobenius extension if L is a finitely generated free A-module.

Remark

The case of a Lie algebra had been proved by Berkson in 1964.

THANK YOU FOR YOUR ATTENTION!