Hopf heaps

Tomasz Brzeziński

Swansea University \& University of Białystok
London (calling) online July 2023

Heaps [Prüfer '24, Baer '29]

A heap is a set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,

Heaps [Prüfer '24, Baer '29]

A heap is a set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

Heaps [Prüfer '24, Baer '29]

A heap is a set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

A heap $(A,[-,-,-])$ is abelian if $[a, b, c]=[c, b, a]$.

Heaps [Prüfer '24, Baer '29]

A heap is a set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

A heap $(A,[-,-,-])$ is abelian if $[a, b, c]=[c, b, a]$.

- One deduces that $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1},\left[a_{4}, a_{3}, a_{2}\right], a_{5}\right]$

Heaps [Prüfer '24, Baer '29]

A heap is a set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

A heap $(A,[-,-,-])$ is abelian if $[a, b, c]=[c, b, a]$.

- One deduces that $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1},\left[a_{4}, a_{3}, a_{2}\right], a_{5}\right]$
- Any (abelian) group is a (-n abelian) heap: $[a, b, c]=a-b+c$.

Heaps [Prüfer '24, Baer '29]

A heap is a set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

A heap $(A,[-,-,-])$ is abelian if $[a, b, c]=[c, b, a]$.

- One deduces that $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1},\left[a_{4}, a_{3}, a_{2}\right], a_{5}\right]$
- Any (abelian) group is a (-n abelian) heap: $[a, b, c]=a-b+c$.

Homomorphism of heaps: a function $f: A \rightarrow B$ such that

$$
f\left[a_{1}, a_{2}, a_{3}\right]=\left[f\left(a_{1}\right), f\left(a_{2}\right), f\left(a_{3}\right)\right]
$$

Affine spaces

- In an affine space A over a vector space V :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;
(b) any point can be shifted by a vector to a (unique) point, in particular, for all $a, b, c \in A$,

$$
a+\overrightarrow{b c} \in A
$$

(c) can shift any pair of points by a rescaled difference between them, i.e., for all $a, b \in A$ and $\lambda \in \mathbb{F}$,

$$
a+\lambda \overrightarrow{a b} \in A
$$

- Observation: we can get rid of V altogether.

Affine spaces

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,

Affine spaces

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,

Affine spaces

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,

Affine spaces

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Affine spaces

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Explicitly:

- $[a, b, c]=a+\overrightarrow{b c}$;
- $\lambda \triangleright_{a} b:=a+\lambda \overrightarrow{a b}$.

Affine spaces

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Explicitly:

- $[a, b, c]=a+\overrightarrow{b c}$;
- $\lambda \triangleright_{a} b:=a+\lambda \overrightarrow{a b}$.

Affine spaces

A morphism of affine spaces (A, V) to (B, W) is a function $f: A \rightarrow B$ which induces a linear transformation $\hat{f}: V \rightarrow W$ such that

$$
\hat{f}(\overrightarrow{a b})=\overrightarrow{f(a) f(b)} .
$$

This is equivalent to say that f is a morphism of heaps such that

$$
f\left(\lambda \triangleright_{a} b\right)=\lambda \triangleright_{f(a)} f(b)
$$

From heaps to groups and torsors

- Any (abelian) group is a (-n abelian) heap:
$[a, b, c]=a-b+c$.

From heaps to groups and torsors

- Any (abelian) group is a (-n abelian) heap:
$[a, b, c]=a-b+c$.
- For all $a, b \in A$,

$$
\tau_{a}^{b}: A \rightarrow A, \quad c \mapsto[c, a, b]
$$

is an automorphism of heaps.

From heaps to groups and torsors

- Any (abelian) group is a (-n abelian) heap:
$[a, b, c]=a-b+c$.
- For all $a, b \in A$,

$$
\tau_{a}^{b}: A \rightarrow A, \quad c \mapsto[c, a, b]
$$

is an automorphism of heaps.

- Define

$$
\operatorname{Tn}(A):=\left\{\tau_{a}^{b} \mid a, b, \in A\right\}
$$

This is a subgroup of automorphisms of A.

From heaps to groups and torsors

- Any (abelian) group is a (-n abelian) heap:
$[a, b, c]=a-b+c$.
- For all $a, b \in A$,

$$
\tau_{a}^{b}: A \rightarrow A, \quad c \mapsto[c, a, b]
$$

is an automorphism of heaps.

- Define

$$
\operatorname{Tn}(A):=\left\{\tau_{a}^{b} \mid a, b, \in A\right\}
$$

This is a subgroup of automorphisms of A.

- The assignment:

$$
A \rightarrow \operatorname{Tn}(A), \quad f \mapsto\left[\operatorname{Tn}(f): \tau_{a}^{b} \mapsto \tau_{f(a)}^{f(b)}\right]
$$

gives a functor from (abelian) heaps to (abelian) groups.

From heaps to groups and torsors

- Any (abelian) group is a (-n abelian) heap:
$[a, b, c]=a-b+c$.
- For all $a, b \in A$,

$$
\tau_{a}^{b}: A \rightarrow A, \quad c \mapsto[c, a, b]
$$

is an automorphism of heaps.

- Define

$$
\operatorname{Tn}(A):=\left\{\tau_{a}^{b} \mid a, b, \in A\right\}
$$

This is a subgroup of automorphisms of A.

- The assignment:

$$
A \rightarrow \operatorname{Tn}(A), \quad f \mapsto\left[\operatorname{Tn}(f): \tau_{a}^{b} \mapsto \tau_{f(a)}^{f(b)}\right]
$$

gives a functor from (abelian) heaps to (abelian) groups.

- $\operatorname{Tn}(A)$ acts on A freely and transitively

$$
c \cdot \tau_{a}^{b}=[c, a, b]
$$

Linearising heaps

- Grunspan '02: enter quantum torsors and cotorsors.

Linearising heaps

- Grunspan '02: enter quantum torsors and cotorsors.
- Schauenburg '02: quantum torsors correspond to (bi)-Galois objects.

Linearising heaps

- Grunspan '02: enter quantum torsors and cotorsors.
- Schauenburg '02: quantum torsors correspond to (bi)-Galois objects.
- Schauenburg '03: the Grunspan map assumed in the definition of a quantum torsor always exists.

Linearising heaps

- Grunspan '02: enter quantum torsors and cotorsors.
- Schauenburg '02: quantum torsors correspond to (bi)-Galois objects.
- Schauenburg '03: the Grunspan map assumed in the definition of a quantum torsor always exists.
- TB \& M. Hryniewicka '23: the role of the translation automorphisms made explicit.

Hopf heaps [Grunspan '02]

A Hopf heap is a coalgebra C together with a coalgebra map

$$
\chi: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto[a, b, c],
$$

such that for all $a, b, c, d, e \in C$,

Hopf heaps [Grunspan ’02]

A Hopf heap is a coalgebra C together with a coalgebra map

$$
\chi: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto[a, b, c],
$$

such that for all $a, b, c, d, e \in C$,

$$
[[a, b, c], d, e]=[a, b,[c, d, e]],
$$

Hopf heaps [Grunspan '02]

A Hopf heap is a coalgebra C together with a coalgebra map

$$
\chi: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto[a, b, c],
$$

such that for all $a, b, c, d, e \in C$,

$$
\begin{gathered}
{[[a, b, c], d, e]=[a, b,[c, d, e]]} \\
\sum\left[c_{(1)}, c_{(2)}, a\right]=\sum\left[a, c_{(1)}, c_{(2)}\right]=\varepsilon(c) a
\end{gathered}
$$

Hopf heaps [Grunspan '02]

A Hopf heap is a coalgebra C together with a coalgebra map

$$
\chi: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto[a, b, c]
$$

such that for all $a, b, c, d, e \in C$,

$$
\begin{gathered}
{[[a, b, c], d, e]=[a, b,[c, d, e]]} \\
\sum\left[c_{(1)}, c_{(2)}, a\right]=\sum\left[a, c_{(1)}, c_{(2)}\right]=\varepsilon(c) a
\end{gathered}
$$

A morphism of Hopf heaps is a coalgebra map f s.t.

$$
f([a, b, c])=[f(a), f(b), f(c)] .
$$

Hopf heaps [Grunspan '02]

A Hopf heap is a coalgebra C together with a coalgebra map

$$
\chi: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto[a, b, c]
$$

such that for all $a, b, c, d, e \in C$,

$$
\begin{gathered}
{[[a, b, c], d, e]=[a, b,[c, d, e]]} \\
\sum\left[c_{(1)}, c_{(2)}, a\right]=\sum\left[a, c_{(1)}, c_{(2)}\right]=\varepsilon(c) a
\end{gathered}
$$

A morphism of Hopf heaps is a coalgebra map f s.t.

$$
f([a, b, c])=[f(a), f(b), f(c)] .
$$

A Grunspan map is a coalgebra map $\vartheta: C \rightarrow C$, s.t.

$$
[[a, b, \vartheta(c)], d, e]=[a,[d, c, b], e]
$$

Hopf heaps [Grunspan '02]

A Hopf heap is a coalgebra C together with a coalgebra map

$$
\chi: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto[a, b, c]
$$

such that for all $a, b, c, d, e \in C$,

$$
\begin{gathered}
{[[a, b, c], d, e]=[a, b,[c, d, e]]} \\
\sum\left[c_{(1)}, c_{(2)}, a\right]=\sum\left[a, c_{(1)}, c_{(2)}\right]=\varepsilon(c) a
\end{gathered}
$$

A morphism of Hopf heaps is a coalgebra map f s.t.

$$
f([a, b, c])=[f(a), f(b), f(c)] .
$$

A Grunspan map is a coalgebra map $\vartheta: C \rightarrow C$, s.t.

$$
[[a, b, \vartheta(c)], d, e]=[a,[d, c, b], e] .
$$

A Hopf algebra H is a Hopf heap with $[a, b, c]=a S(b) c$.

Translations

Let (C, χ) be a Hopf heap.

- For all $a, b \in C$, the linear map

$$
\tau_{a}^{b}: C \rightarrow C, \quad c \mapsto \chi(c \otimes a \otimes b)=[c, a, b]
$$

is called a right (a, b)-translation. The space spanned by all right (a, b)-translations is denoted by $\operatorname{Tn}(C)$.

Translations

Let (C, χ) be a Hopf heap.

- For all $a, b \in C$, the linear map

$$
\tau_{a}^{b}: C \rightarrow C, \quad c \mapsto \chi(c \otimes a \otimes b)=[c, a, b]
$$

is called a right (a, b)-translation. The space spanned by all right (a, b)-translations is denoted by $\operatorname{Tn}(C)$.

- Symmetrically, linear maps

$$
\sigma_{b}^{a}: C \rightarrow C, \quad c \mapsto \chi(a \otimes b \otimes c)=[a, b, c]
$$

are called left (a, b)-translations and the space spanned by all of them is denoted by $\widehat{\operatorname{Tn}}(C)$.

Properties of translations

Let (C, χ) be a Hopf heap. Then, for all $a, b, c, d \in C$,

$$
\begin{aligned}
\Delta\left(\tau_{a}^{b}(c)\right)= & \sum \tau_{a_{(2)}}^{b_{(1)}}\left(c_{(1)}\right) \otimes \tau_{a_{(1)}}^{b_{(2)}}\left(c_{(2)}\right) \\
& \sum \tau_{a_{(1)}}^{\left[a_{(2)}, b, c\right]}=\varepsilon(a) \tau_{b}^{c} \\
& \sum \tau_{a_{(1)}}^{a_{(2)}}=\varepsilon(a) \mathrm{id} \\
& \tau_{c}^{d} \circ \tau_{a}^{b}=\tau_{a}^{[b, c, d]}
\end{aligned}
$$

In addition if the Grunspan map ϑ exists, then

$$
\begin{gathered}
\sum \tau_{a_{(2)}}^{\left[\vartheta\left(a_{(1)}\right), b, c\right]}=\varepsilon(a) \tau_{b}^{c} \\
\sum \tau_{a_{(2)}}^{\vartheta\left(a_{(1)}\right)}=\varepsilon(a) \mathrm{id} \\
\tau_{c}^{d} \circ \tau_{a}^{\vartheta(b)}=\tau_{[c, b, a]}^{d}
\end{gathered}
$$

Theorem (translation Hopf algebras)

- $\operatorname{Tn}(C)$ is a bialgebra wrt the opposite composition, and :

$$
\Delta\left(\tau_{a}^{b}\right)=\sum \tau_{a_{(2)}}^{b_{(1)}} \otimes \tau_{a_{(1)}}^{b_{(2)}}, \quad \varepsilon\left(\tau_{a}^{b}\right)=\varepsilon(a) \varepsilon(b) .
$$

- If ϑ exists, then $\operatorname{Tn}(C)$ is a Hopf algebra with the antipode

$$
S\left(\tau_{a}^{b}\right)=\tau_{b}^{\vartheta(a)} .
$$

- If $f: C \rightarrow D$ is a morphism of Hopf heaps, then

$$
\operatorname{Tn}(f): \operatorname{Tn}(C) \rightarrow \operatorname{Tn}(D), \quad \tau_{a}^{b} \mapsto \tau_{f(a)}^{f(b)},
$$

is a bialgebra (Hopf algebra) map.

Theorem (translation Hopf algebras)

- $\operatorname{Tn}(C)$ is a bialgebra wrt the opposite composition, and :

$$
\Delta\left(\tau_{a}^{b}\right)=\sum \tau_{a_{(2)}}^{b_{(1)}} \otimes \tau_{a_{(1)}}^{b_{(2)}}, \quad \varepsilon\left(\tau_{a}^{b}\right)=\varepsilon(a) \varepsilon(b) .
$$

- If ϑ exists, then $\operatorname{Tn}(C)$ is a Hopf algebra with the antipode

$$
S\left(\tau_{a}^{b}\right)=\tau_{b}^{\vartheta(a)} .
$$

- If $f: C \rightarrow D$ is a morphism of Hopf heaps, then

$$
\operatorname{Tn}(f): \operatorname{Tn}(C) \rightarrow \operatorname{Tn}(D), \quad \tau_{a}^{b} \mapsto \tau_{f(a)}^{f(b)},
$$

is a bialgebra (Hopf algebra) map.

Theorem cd. (translation Hopf algebras)

- $C \mapsto \operatorname{Tn}(C), f \mapsto \operatorname{Tn}(f)$ is a functor from the category of Hopf heaps to that of bialgebras (Hopf algebras).

Theorem cd. (translation Hopf algebras)

- $C \mapsto \operatorname{Tn}(C), f \mapsto \operatorname{Tn}(f)$ is a functor from the category of Hopf heaps to that of bialgebras (Hopf algebras).
- Similar statements hold for $\widehat{\operatorname{Tn}}(C)$.

Theorem cd. (translation Hopf algebras)

- $C \mapsto \operatorname{Tn}(C), f \mapsto \operatorname{Tn}(f)$ is a functor from the category of Hopf heaps to that of bialgebras (Hopf algebras).
- Similar statements hold for $\widehat{\operatorname{Tn}}(C)$.
- For all grouplike $x \in C, C$ with

$$
1=x / \varepsilon(x), \quad a b=[a, x, b], \quad S(a)=[x, a, x] .
$$

is a Hopf algebra isomorphic to $\operatorname{Tn}(C)$ and $\widehat{\operatorname{Tn}}(C)$.

Galois co-objects

Definition
A right H-module coalgebra C is a right Hopf-Galois co-object if
(a) $\operatorname{ker} \varepsilon=\mathbb{F}\langle c \cdot h-c \varepsilon(h) \mid c \in C, h \in H\rangle$,
(b) the canonical map

$$
\text { can : } C \otimes H \rightarrow C \otimes C, \quad c \otimes h \mapsto \sum c_{(1)} \otimes c_{(2)} \cdot h,
$$

is an isomorphism.

Galois co-objects

Definition

A right H-module coalgebra C is a right Hopf-Galois co-object if
(a) $\operatorname{ker} \varepsilon=\mathbb{F}\langle c \cdot h-c \varepsilon(h) \mid c \in C, h \in H\rangle$,
(b) the canonical map

$$
\text { can : } C \otimes H \rightarrow C \otimes C, \quad c \otimes h \mapsto \sum c_{(1)} \otimes c_{(2)} \cdot h,
$$

is an isomorphism.
A left Hopf-Galois co-object is defined symmetrically. A coalgebra C that is both a right and left Hopf-Galois co-object of Hopf algebras whose actions on C commute is called a bi-Galois co-object.

The Ehresman Hopf algebra

- The cotranslation map is defined by

$$
\tau=(\varepsilon \otimes \mathrm{id}) \circ \operatorname{can}^{-1}
$$

The Ehresman Hopf algebra

- The cotranslation map is defined by

$$
\tau=(\varepsilon \otimes \mathrm{id}) \circ \mathrm{can}^{-1}
$$

- The subspace

$$
I=\mathbb{F}\left\langle a \otimes b \varepsilon(c)-\sum a \cdot \tau\left(b \otimes c_{(1)}\right) \otimes c_{(2)} \mid a, b, c \in C\right\rangle \subseteq C \otimes C,
$$

is a coideal in $C^{\mathrm{co}} \otimes C$.

The Ehresman Hopf algebra

- The cotranslation map is defined by

$$
\tau=(\varepsilon \otimes \mathrm{id}) \circ \operatorname{can}^{-1}
$$

- The subspace
$I=\mathbb{F}\left\langle a \otimes b \varepsilon(c)-\sum a \cdot \tau\left(b \otimes c_{(1)}\right) \otimes c_{(2)} \mid a, b, c \in C\right\rangle \subseteq C \otimes C$,
is a coideal in $C^{\text {co }} \otimes C$.
- $\mathrm{E}(C, H):=C^{\mathrm{co}} \otimes C / I$ is a Hopf algebra

$$
\begin{gathered}
1=\overline{\sum e_{(1)} \otimes e_{(2)}}, \quad \overline{a \otimes b} \overline{c \otimes d}=\overline{a \cdot \tau(b \otimes c) \otimes d}, \\
S(\overline{a \otimes b})=\overline{\sum a \cdot \tau\left(b \otimes e_{(1)}\right) \otimes e_{(2)}},
\end{gathered}
$$

where $e \in \varepsilon^{-1}(1)$.

Theorem (heaps to Galois co-objects)

Let (C, χ) be a Hopf heap. Then:

- C is a right Hopf-Galois co-object over the right translation Hopf algebra $\operatorname{Tn}(C)$ with the action,

$$
c \cdot \tau_{a}^{b}=\tau_{a}^{b}(c)=[c, a, b]
$$

Theorem (heaps to Galois co-objects)

Let (C, χ) be a Hopf heap. Then:

- C is a right Hopf-Galois co-object over the right translation Hopf algebra $\operatorname{Tn}(C)$ with the action,

$$
c \cdot \tau_{a}^{b}=\tau_{a}^{b}(c)=[c, a, b]
$$

- $\mathrm{E}(C, \operatorname{Tn}(C)) \cong \widehat{\operatorname{Tn}}(C)$.

Theorem (heaps to Galois co-objects)

Let (C, χ) be a Hopf heap. Then:

- C is a right Hopf-Galois co-object over the right translation Hopf algebra $\operatorname{Tn}(C)$ with the action,

$$
c \cdot \tau_{a}^{b}=\tau_{a}^{b}(c)=[c, a, b]
$$

- $\mathrm{E}(C, \operatorname{Tn}(C)) \cong \widehat{\operatorname{Tn}}(C)$.
- C is a left Hopf-Galois co-object over the left translation Hopf algebra $\widehat{\operatorname{Tn}}(C)$ with the action, for all $\sigma_{b}^{a} \in \widehat{\operatorname{Tn}}(C)$ and $c \in C$,

$$
\sigma_{b}^{a} \cdot c=\sigma_{b}^{a}(c)=[a, b, c] .
$$

Theorem (heaps to Galois co-objects)

Let (C, χ) be a Hopf heap. Then:

- C is a right Hopf-Galois co-object over the right translation Hopf algebra $\operatorname{Tn}(C)$ with the action,

$$
c \cdot \tau_{a}^{b}=\tau_{a}^{b}(c)=[c, a, b]
$$

- $\mathrm{E}(C, \operatorname{Tn}(C)) \cong \widehat{\operatorname{Tn}}(C)$.
- C is a left Hopf-Galois co-object over the left translation Hopf algebra $\widehat{\operatorname{Tn}}(C)$ with the action, for all $\sigma_{b}^{a} \in \widehat{\operatorname{Tn}}(C)$ and $c \in C$,

$$
\sigma_{b}^{a} \cdot c=\sigma_{b}^{a}(c)=[a, b, c] .
$$

- C is a $(\widehat{\operatorname{Tn}}(C), \operatorname{Tn}(C))$-bi-Galois co-object.

Theorem (heaps to Galois co-objects)

Let (C, χ) be a Hopf heap. Then:

- C is a right Hopf-Galois co-object over the right translation Hopf algebra $\operatorname{Tn}(C)$ with the action,

$$
c \cdot \tau_{a}^{b}=\tau_{a}^{b}(c)=[c, a, b]
$$

- $\mathrm{E}(C, \operatorname{Tn}(C)) \cong \widehat{\operatorname{Tn}}(C)$.
- C is a left Hopf-Galois co-object over the left translation Hopf algebra $\widehat{\operatorname{Tn}}(C)$ with the action, for all $\sigma_{b}^{a} \in \widehat{\operatorname{Tn}}(C)$ and $c \in C$,

$$
\sigma_{b}^{a} \cdot c=\sigma_{b}^{a}(c)=[a, b, c] .
$$

- C is a $(\widehat{\operatorname{Tn}}(C), \operatorname{Tn}(C))$-bi-Galois co-object.
- $\operatorname{Tn}(C)$ and $\widehat{\operatorname{Tn}}(C)$ are Hopf algebras.

Theorem (Galois co-objects to heaps)

Let H be a Hopf algebra and C be a right H-Hopf-Galois co-object. Then

- C is a Hopf heap with the Grunspan map by the operation

$$
\chi_{(C, H)}: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto a \cdot \tau(b \otimes c),
$$

where τ is the cotranslation map.

Theorem (Galois co-objects to heaps)

Let H be a Hopf algebra and C be a right H-Hopf-Galois co-object. Then

- C is a Hopf heap with the Grunspan map by the operation

$$
\chi_{(C, H)}: C \otimes C^{\mathrm{co}} \otimes C \rightarrow C, \quad a \otimes b \otimes c \mapsto a \cdot \tau(b \otimes c),
$$

where τ is the cotranslation map.

- $H \cong \operatorname{Tn}(C)$ as Hopf algebras.

Equivalence of categories

- A morphism of Galois co-objects (C, H) to (D, K) is a pair (f, g)
(a) $f: C \rightarrow D$ is a homomorphism of coalgebras,
(b) $g: H \rightarrow K$ is a homomorphism of Hopf algebras,
(c) for all $c \in C$ and $h \in H$,

$$
f(c \cdot h)=f(c) \cdot g(h)
$$

Equivalence of categories

- A morphism of Galois co-objects (C, H) to (D, K) is a pair (f, g)
(a) $f: C \rightarrow D$ is a homomorphism of coalgebras,
(b) $g: H \rightarrow K$ is a homomorphism of Hopf algebras,
(c) for all $c \in C$ and $h \in H$,

$$
f(c \cdot h)=f(c) \cdot g(h)
$$

- The functors

$$
\begin{array}{ll}
\mathrm{Ga}: \mathcal{H H} \rightarrow \mathcal{H \mathcal { G } ,} \quad(C, \chi) \mapsto(C, \operatorname{Tn}(C)), \quad f \mapsto(f, \operatorname{Tn}(f)), \\
\mathrm{He}: \mathcal{H} \mathcal{G} \rightarrow \mathcal{H \mathcal { H } ,} \quad(C, H) \mapsto\left(C, \chi_{(C, H)}\right), & (f, g) \mapsto f,
\end{array}
$$

are a pair of inverse equivalences between categories of Hopf heaps and right Hopf-Galois co-objects.

References

- The talk is based on:
T. Brzeziński, M. Hryniewicka, Translation Hopf algebras and Hopf heaps, arXiv:2303.13154 (2023)

References

- The talk is based on:
T. Brzeziński, M. Hryniewicka, Translation Hopf algebras and Hopf heaps, arXiv:2303.13154 (2023)
- Hopf heaps or (co)torsors are studied in:
- C. Grunspan, Quantum torsors, JPAA 184 (2003), 229-255.
- P. Schauenburg, Quantum torsors and Hopf-Galois objects, arXiv:math/0208047 (2002); Quantum torsors with fewer axioms, arXiv:math/0302003 (2003)
- Z. Škoda, Quantum heaps, cops and heapy categories, Math.

Commun. 12 (2007), 1-9.

References

- The talk is based on:
T. Brzeziński, M. Hryniewicka, Translation Hopf algebras and Hopf heaps, arXiv:2303.13154 (2023)
- Hopf heaps or (co)torsors are studied in:
- C. Grunspan, Quantum torsors, JPAA 184 (2003), 229-255.
- P. Schauenburg, Quantum torsors and Hopf-Galois objects, arXiv:math/0208047 (2002); Quantum torsors with fewer axioms, arXiv:math/0302003 (2003)
- Z. Škoda, Quantum heaps, cops and heapy categories, Math.

Commun. 12 (2007), 1-9.

- Key steps in proofs rely on papers by P. Schauenburg:
- Hopf bi-Galois extensions, Comm. Algebra 24 (1996), 3797-3825.
- A bialgebra that admits a Hopf-Galois extension is a Hopf algebra, Proc. Amer. Math. Soc., 125 (1997), 83-85 .
- Hopf-Galois and bi-Galois extensions, Fields Inst. Commun.

43, (2004), pp. 469-515.

