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Heaps [Prüfer ’24, Baer ’29]
A heap is a set A together with a ternary operation

[−,−,−] : A×A×A→ A,

such that for all ai ∈ A, i = 1, . . . , 5,

(a) [[a1, a2, a3] , a4, a5] = [a1, a2, [a3, a4, a5]] ,

(b) [a1, a2, a2] = a1 = [a2, a2, a1] .

A heap (A, [−,−,−]) is abelian if [a, b, c] = [c, b, a].

I One deduces that [[a1, a2, a3] , a4, a5] = [a1, [a4, a3, a2] , a5]

I Any (abelian) group is a (-n abelian) heap:
[a, b, c] = a− b+ c.

Homomorphism of heaps: a function f : A→ B such that

f [a1, a2, a3] = [f(a1), f(a2), f(a3)] .
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Affine spaces

I In an affine space A over a vector space V :

(a) any a, b ∈ A differ by a unique vector
−→
ab ;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a, b, c ∈ A,

a+
−→
bc ∈ A;

(c) can shift any pair of points by a rescaled difference
between them, i.e., for all a, b ∈ A and λ ∈ F,

a+ λ
−→
ab ∈ A.

I Observation: we can get rid of V altogether.



Affine spaces

An affine space A is a heap with an F-action (heap of
F-modules) (λ, a, b) 7→ λ .a b, such that

I − .a − is a bi-heap map,

I − .a b is associative,
I λ .a b = [λ .c b, λ .c a, a],
I 0 .a b = a, 1 .a b = b.

Explicitly:

I [a, b, c] = a+
−→
bc ;

I λ .a b := a+ λ
−→
ab .
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Affine spaces

A morphism of affine spaces (A, V ) to (B,W ) is a function
f : A→ B which induces a linear transformation f̂ : V →W
such that

f̂
(−→
ab
)

=
−−−−−−−→
f(a)f(b) .

This is equivalent to say that f is a morphism of heaps such
that

f(λ .a b) = λ .f(a) f(b)



From heaps to groups and torsors
I Any (abelian) group is a (-n abelian) heap:

[a, b, c] = a− b+ c.

I For all a, b ∈ A,

τ ba : A→ A, c 7→ [c, a, b]

is an automorphism of heaps.
I Define

Tn(A) := {τ ba | a, b,∈ A}.

This is a subgroup of automorphisms of A.
I The assignment:

A→ Tn(A), f 7→ [Tn(f) : τ ba 7→ τ
f(b)
f(a)],

gives a functor from (abelian) heaps to (abelian) groups.
I Tn(A) acts on A freely and transitively

c · τ ba = [c, a, b].
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Linearising heaps

I Grunspan ’02: enter quantum torsors and cotorsors.

I Schauenburg ’02: quantum torsors correspond to
(bi)-Galois objects.

I Schauenburg ’03: the Grunspan map assumed in the
definition of a quantum torsor always exists.

I TB & M. Hryniewicka ’23: the role of the translation
automorphisms made explicit.
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Hopf heaps [Grunspan ’02]
A Hopf heap is a coalgebra C together with a coalgebra map

χ : C ⊗ Cco ⊗ C → C, a⊗ b⊗ c 7→ [a, b, c],

such that for all a, b, c, d, e ∈ C,

[[a, b, c], d, e] = [a, b, [c, d, e]],∑
[c(1), c(2), a] =

∑
[a, c(1), c(2)] = ε(c)a.

A morphism of Hopf heaps is a coalgebra map f s.t.

f([a, b, c]) = [f(a), f(b), f(c)].

A Grunspan map is a coalgebra map ϑ : C → C, s.t.

[[a, b, ϑ(c)], d, e] = [a, [d, c, b], e].

A Hopf algebra H is a Hopf heap with [a, b, c] = aS(b)c.
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Translations

Let (C,χ) be a Hopf heap.
I For all a, b ∈ C, the linear map

τ ba : C → C, c 7→ χ(c⊗ a⊗ b) = [c, a, b],

is called a right (a, b)-translation. The space spanned by
all right (a, b)-translations is denoted by Tn(C).

I Symmetrically, linear maps

σab : C → C, c 7→ χ(a⊗ b⊗ c) = [a, b, c],

are called left (a, b)-translations and the space spanned
by all of them is denoted by T̂n(C).
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Properties of translations
Let (C,χ) be a Hopf heap. Then, for all a, b, c, d ∈ C,

∆(τ ba(c)) =
∑

τ
b(1)
a(2) (c(1))⊗ τ

b(2)
a(1) (c(2)),∑

τ
[a(2),b,c]
a(1) = ε(a)τ cb ,∑
τ
a(2)
a(1) = ε(a)id,

τdc ◦ τ ba = τ [b,c,d]a .

In addition if the Grunspan map ϑ exists, then∑
τ
[ϑ(a(1)),b,c]
a(2) = ε(a)τ cb ,∑
τ
ϑ(a(1))
a(2) = ε(a)id,

τdc ◦ τϑ(b)a = τd[c,b,a].



Theorem (translation Hopf algebras)

I Tn(C) is a bialgebra wrt the opposite composition, and :

∆(τ ba) =
∑

τ
b(1)
a(2) ⊗ τ

b(2)
a(1) , ε(τ ba) = ε(a)ε(b).

I If ϑ exists, then Tn(C) is a Hopf algebra with the antipode

S(τ ba) = τ
ϑ(a)
b .

I If f : C → D is a morphism of Hopf heaps, then

Tn(f) : Tn(C)→ Tn(D), τ ba 7→ τ
f(b)
f(a),

is a bialgebra (Hopf algebra) map.
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Theorem cd. (translation Hopf algebras)

I C 7→ Tn(C), f 7→ Tn(f) is a functor from the category of
Hopf heaps to that of bialgebras (Hopf algebras).

I Similar statements hold for T̂n(C).
I For all grouplike x ∈ C, C with

1 = x/ε(x), ab = [a, x, b], S(a) = [x, a, x].

is a Hopf algebra isomorphic to Tn(C) and T̂n(C).
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Galois co-objects

Definition
A right H-module coalgebra C is a right Hopf-Galois
co-object if

(a) ker ε = F〈c · h− cε(h) | c ∈ C, h ∈ H〉,
(b) the canonical map

can : C ⊗H → C ⊗ C, c⊗ h 7→
∑

c(1) ⊗ c(2) · h,

is an isomorphism.

A left Hopf-Galois co-object is defined symmetrically.
A coalgebra C that is both a right and left Hopf-Galois co-object
of Hopf algebras whose actions on C commute is called a
bi-Galois co-object.
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The Ehresman Hopf algebra

I The cotranslation map is defined by

τ = (ε⊗ id) ◦ can−1.

I The subspace

I = F〈a⊗bε(c)−
∑

a·τ(b⊗c(1))⊗c(2) | a, b, c ∈ C〉 ⊆ C⊗C,

is a coideal in Cco ⊗ C.
I E(C,H) := Cco ⊗ C/I is a Hopf algebra

1 =
∑

e(1) ⊗ e(2), a⊗ b c⊗ d = a · τ(b⊗ c)⊗ d,

S(a⊗ b) =
∑

a · τ(b⊗ e(1))⊗ e(2),

where e ∈ ε−1(1).
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1 =
∑

e(1) ⊗ e(2), a⊗ b c⊗ d = a · τ(b⊗ c)⊗ d,

S(a⊗ b) =
∑

a · τ(b⊗ e(1))⊗ e(2),

where e ∈ ε−1(1).
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Theorem (heaps to Galois co-objects)

Let (C,χ) be a Hopf heap. Then:
I C is a right Hopf-Galois co-object over the right translation

Hopf algebra Tn(C) with the action,

c · τ ba = τ ba(c) = [c, a, b].

I E(C,Tn(C)) ∼= T̂n(C).
I C is a left Hopf-Galois co-object over the left translation

Hopf algebra T̂n(C) with the action, for all σab ∈ T̂n(C) and
c ∈ C,

σab · c = σab (c) = [a, b, c].

I C is a (T̂n(C),Tn(C))-bi-Galois co-object.
I Tn(C) and T̂n(C) are Hopf algebras.
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Theorem (Galois co-objects to heaps)

Let H be a Hopf algebra and C be a right H-Hopf-Galois
co-object. Then

I C is a Hopf heap with the Grunspan map by the operation

χ(C,H) : C ⊗ Cco ⊗ C → C, a⊗ b⊗ c 7→ a · τ(b⊗ c),

where τ is the cotranslation map.

I H ∼= Tn(C) as Hopf algebras.
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Equivalence of categories

I A morphism of Galois co-objects (C,H) to (D,K) is a pair
(f, g)

(a) f : C → D is a homomorphism of coalgebras,
(b) g : H → K is a homomorphism of Hopf algebras,
(c) for all c ∈ C and h ∈ H,

f(c · h) = f(c) · g(h).

I The functors

Ga :HH → HG, (C,χ) 7→ (C,Tn(C)), f 7→ (f,Tn(f)),

He :HG → HH, (C,H) 7→ (C,χ(C,H)), (f, g) 7→ f,

are a pair of inverse equivalences between categories of
Hopf heaps and right Hopf-Galois co-objects.
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