Hopf algebroids (and Lie bialgebroids) as gauge symmetries in 3D gravity

I. Classical and Quantum symmetries

Gauge symmetries
Correspondence: Gauge symmetries \leftrightarrow Algebra

Generalized gauge symmetries
Correspondence: Generalized gauge symmetries \leftrightarrow Algebra

II. Symmetries in 3D Classical and Quantum gravity

3d gravity as a Chern-Simons theory

Local model spacetimes and isometry groups ($G_{\Lambda, c}$)

Λ	Euclidean $\left(c^{2}<0\right)$	Lorentzian $\left(c^{2}>0\right)$
0	$\mathbf{E}^{3}=\mathrm{ISO}(3) / \mathrm{SO}(3)$	$\mathbf{M}^{2+1}=\mathrm{ISO}(2,1) / \mathrm{SO}(2,1)$
>0	$\mathbf{S}^{3}=\mathrm{SO}(4) / \mathrm{SO}(3)$	$\mathbf{d S}^{2+1}=\mathrm{SO}(3,1) / \mathrm{SO}(2,1)$
<0	$\mathbf{H}^{3}=\mathrm{SO}(3,1) / \mathrm{SO}(3)$	$\mathbf{A d S}^{2+1}=\mathrm{SO}(2,2) / \mathrm{SO}(2,1)$

3d gravity as a Chern-Simons theory

Local model spacetimes and isometry groups ($G_{\Lambda, c}$)

Λ	Euclidean $\left(c^{2}<0\right)$	Lorentzian $\left(c^{2}>0\right)$
0	$\mathbf{E}^{3}=\mathrm{ISO}(3) / \mathrm{SO}(3)$	$\mathbf{M}^{2+1}=\mathrm{ISO}(2,1) / \mathrm{SO}(2,1)$
>0	$\mathbf{S}^{3}=\mathrm{SO}(4) / \mathrm{SO}(3)$	$\mathbf{d S}^{2+1}=\mathrm{SO}(3,1) / \mathrm{SO}(2,1)$
<0	$\mathbf{H}^{3}=\mathrm{SO}(3,1) / \mathrm{SO}(3)$	$\mathbf{A d S}^{2+1}=\mathrm{SO}(2,2) / \mathrm{SO}(2,1)$

Just 6 possible Lie algebras $\mathfrak{g}_{\wedge, c}$ generated by $\left\{J_{0}, J_{1}, J_{2}, P_{0}, P_{1}, P_{2}\right\}$

$$
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J^{c}, \quad\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P^{c}, \quad \text { and } \quad\left[P_{a}, P_{b}\right]=\underbrace{\left(-c^{2} \Lambda\right.}) a b c J^{c}
$$

3d gravity as a Chern-Simons theory (Witten 1988)
Local model spacetimes and isometry groups ($G_{\Lambda, c}$)

Λ^{k}	Euclidean $\left(c^{2}<0\right)$	Lorentzian $\left(c^{2}>0\right) \leftarrow$
0	$\mathbf{E}^{3}=\mathrm{ISO}(3) / \mathrm{SO}(3)$	$\mathbf{M}^{2+1}=\mathrm{ISO}(2,1) / \mathrm{SO}(2,1)$
>0	$\mathbf{S}^{3}=\mathrm{SO}(4) / \mathrm{SO}(3)$	$\mathbf{d S}^{2+1}=\mathrm{SO}(3,1) / \mathrm{SO}(2,1)$
<0	$\mathbf{H}^{3}=\mathrm{SO}(3,1) / \mathrm{SO}(3)$	$\mathbf{A d S}^{2+1}=\mathrm{SO}(2,2) / \mathrm{SO}(2,1)$

Just 6 possible Lie algebras $\mathfrak{g}_{\Lambda, c}$ generated by $\left\{J_{0}, J_{1}, J_{2}, P_{0}, P_{1}, P_{2}\right\}$

$$
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J^{c}
$$

號

$$
\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P^{c}, \quad \text { and }\left[P_{a}, P_{b}\right]=\underbrace{z}_{\underbrace{-c^{2} \lambda}_{\lambda})}
$$

Why Quantum groups in 3D quantum gravity? $\begin{array}{r}G= \pm 50(2,1) \\ =S(2, R)\end{array}$
Phase space of a free point particle

Why Quantum groups in 3D quantum gravity?
Phase space of a gravitational point particle
Symplectic Leaves of $\frac{\left.P_{3}^{*}\right)}{R}=\underbrace{\left.S L(2, R) \otimes \mathbb{R}^{3}\right)}$
Conjugacy classes in F_{3}

$$
\begin{aligned}
& (v, x) \xrightarrow{e-m J_{0}-5 P_{0}},(v, x)^{-1}=\left(u,-8 \pi G A d\left(u^{\prime}\right) j\right) \rightarrow(u)-(p \pi G j) \\
& \cdot \| u=v^{-1} e^{-m J_{0}} v=e^{-p \pi \epsilon \infty} J^{a} \\
& K=0 \backslash i=\left[x, p_{a} J^{2}\right]+s \hat{p}_{a} P_{a}+G\left(p^{2}\right) \\
& \text { Poisson structure } \\
& \{j a, j b\}=-\varepsilon_{a b c} j^{c},\left\{j a, p b \mid=-\varepsilon_{a b c} p^{c},\left\{\rho_{a}, p b\right\}=0\right.
\end{aligned}
$$

Why Quantum groups in 3D quantum gravity?
Quantization of the dynamics (Quantum double and κ-Poincaré...)

Why Quantum groups in 3D quantum gravity?
Quantization of the dynamics (Quantum double and κ-Poincaré...)

$$
\begin{aligned}
& \text { Non-uniqueness } \\
& U_{q}(s(2, R)) \propto \mathbb{C}_{q}(S L(2, R))^{q \neq 1}=U_{q}(s / 2) \xrightarrow{S} U_{q}(s(12, R)) \propto \mathbb{q}(\mathbb{N}) \\
& q \rightarrow 1 \\
& D(U(S \mid(2, R)))
\end{aligned}
$$

Conclusion 1
Quantum groups could be used to encode symmetries of 3D quantum gravity

III. Enlarging the structure of quantum symmetries: Quantum double

Generalized FRST construction

Input

- \mathfrak{g} a finite dimensional Lie algebra and \mathfrak{h} a Lie subalgebra.
- V a finite dimensional vector space with basis $\left\{v_{x}\right\}_{x \in X}$.
- $\omega: X \rightarrow \mathfrak{h}^{*}$ an arbitrary map.
- $R \in \mathrm{M}_{\mathfrak{h}}{ }^{*} \otimes \operatorname{End}_{\mathfrak{h}}(V \otimes V)$ a solution of the QDYBE, s.t. $R_{x y}^{a b}=0$ if $\omega(x)+\omega(y) \neq \omega(a)+\omega(b)$

Generalized FRST construction

Input

- \mathfrak{g} a finite dimensional Lie algebra and \mathfrak{h} a Lie subalgebra.
- V a finite dimensional vector space with basis $\left\{v_{x}\right\}_{x \in X}$.
- $\omega: X \rightarrow \mathfrak{h}^{*}$ an arbitrary map.
- $R \in \mathrm{M}_{\mathfrak{h}^{*}} \otimes \operatorname{End}_{\mathfrak{h}}(V \otimes V)$ a solution of the QDYBE, s.t. $R_{x y}^{a b}=0$ if $\omega(x)+\omega(y) \neq \omega(a)+\omega(b)$

Output (FRST construction) [Koeling and Van Norden (2001)]

An \mathfrak{h}-bialgebroid generated by $\left\{L_{x y}\right\}_{x, y \in X}$ and two copies of $M_{\mathfrak{h}^{*}}$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$

Definition (The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$)

Applying the construction above for $\mathfrak{g}=\mathfrak{s l}_{2}, \mathfrak{h}=\mathbb{C}, X=\{ \pm\}$, $\omega(\pm)= \pm 1$ and

$$
R_{q}(\lambda)=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & \frac{q^{-1}-q}{q^{2(\lambda+1)}-1} & 0 \\
0 & \frac{q^{-1}-q}{q^{-2(\lambda+1)}-1} & \frac{\left(q^{2(\lambda+1)}-q^{2}\left(q^{2(\lambda+1)}-q^{-2}\right)\right.}{\left(q^{2(\lambda+1)}-1\right)^{2}} & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

Koeling and Van Norden constructed a Hopf algebroid (quantum dynamical group) denoted by $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$.

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$

Definition (The Hopf algebroid $\widetilde{\mathcal{F}}_{q}\left(\mathfrak{s l}_{2}\right)$)

Applying the construction above for $\mathfrak{g}=\mathfrak{s l}_{2}, \mathfrak{h}=\mathbb{C}, X=\{ \pm\}$, $\omega(\pm)= \pm 1$ and

$$
R_{q}(\lambda)=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & \frac{q^{-1}-q}{q^{2(\lambda+1)}-1} & 0 \\
0 & \frac{q^{-1}-q}{q^{-2(\lambda+1)}-1} & \frac{\left(q^{2(\lambda+1)}-q^{2}\left(a^{2}(\lambda+1)\right.\right.}{}\left(q^{2(\lambda+1)}-q^{-2}\right) & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

Koeling and Van Norden constructed a Hopf algebroid (quantum dynamical group) denoted by $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$.

Notation

$$
\alpha=L_{++}, \quad \beta=L_{+-}, \quad \gamma=L_{-+}, \quad, \quad \delta=L_{--}
$$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ (Product)

Multiplication

$$
\left\{\begin{aligned}
\alpha \beta & =q F(\rho-1) \beta \alpha, & \alpha \gamma=q F(\lambda) \gamma \alpha \\
\beta \delta & =q F(\lambda) \delta \beta, & \gamma \delta=q F(\rho-1) \delta \gamma \\
\alpha \delta-\delta \alpha & =H(\lambda, \rho) \gamma \beta, & \beta \gamma-G(\lambda) \gamma \beta=I(\lambda, \rho) \alpha \delta
\end{aligned}\right.
$$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ (Product)

Multiplication

$$
\begin{aligned}
\alpha \beta & =q F(\rho-1) \beta \alpha, & \alpha \gamma & =q F(\lambda) \gamma \alpha \\
\beta \delta & =q F(\lambda) \delta \beta, & \gamma \delta & =q F(\rho-1) \delta \gamma \\
\alpha \delta-\delta \alpha & =H(\lambda, \rho) \gamma \beta, & \beta \gamma-G(\lambda) \gamma \beta & =I(\lambda, \rho) \alpha \delta
\end{aligned}
$$

Functions

$$
\left[\begin{array}{l}
F(\lambda)=\frac{q^{2(\lambda+1)}-q^{-2}}{q^{2(\lambda+1)}-1}, \quad G(\lambda)=\frac{\left(q^{2(\lambda+1)}-q^{2}\right)\left(q^{2(\lambda+1)}-q^{-2}\right)}{\left(q^{2(\lambda+1)}-1\right)^{2}} \\
H(\lambda, \rho)=\frac{\left(q-q^{-1}\right)\left(q^{2(\lambda+\rho+2)}-1\right)}{\left(q^{2(\lambda+1)}-1\right)\left(q^{2(\rho+1)}-1\right)}, \quad \text { Limiks } \\
I(\lambda, \rho)=\frac{\left(q-q^{-1}\right)\left(q^{2(\rho+1)}-q^{2(\lambda+1)}\right)}{\left(q^{2(\lambda+1)}-1\right)\left(q^{2(\rho+1)}-1\right)} \quad(\text { recover Known HA) })
\end{array}\right.
$$

The Hops algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ (Determinant condition)

Important comment!

In order to get a Hopf-algebroid it is required to adjoin the relation

$$
\alpha \delta-q F(\lambda) \gamma \beta=1
$$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ (Counit, Coproduct and Antipode)

Counit

$$
\epsilon(\alpha)=T_{-1}, \quad \epsilon(\beta)=0, \quad \epsilon(\gamma)=0, \quad \epsilon(\delta)=T_{+1}, \quad \epsilon(f(\lambda \text { or } \rho))=f
$$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ (Counit, Coproduct and Antipode)

Counit

$$
\epsilon(\alpha)=T_{-1}, \quad \epsilon(\beta)=0, \quad \epsilon(\gamma)=0, \quad \epsilon(\delta)=T_{+1}, \quad \epsilon(f(\lambda \text { or } \rho))=f
$$

Coproduct

$$
\begin{aligned}
\triangle(\alpha) & =\alpha \otimes \alpha+\beta \otimes \gamma, \\
\triangle(\gamma) & =\gamma \otimes \alpha+\delta \otimes \gamma, \\
\triangle(f(\lambda)) & =f(\lambda) \otimes 1,
\end{aligned}
$$

$$
\triangle(\beta)=\alpha \otimes \beta+\beta \otimes \delta,
$$

$$
\triangle(\delta)=\gamma \otimes \beta+\delta \otimes \delta,
$$

$$
\triangle(f(\rho))=1 \otimes f(\rho)
$$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ (Counit, Coproduct and Antipode)

Counit

$$
\epsilon(\alpha)=T_{-1}, \quad \epsilon(\beta)=0, \quad \epsilon(\gamma)=0, \quad \epsilon(\delta)=T_{+1}, \quad \epsilon(f(\lambda \text { or } \rho))=f
$$

Coproduct

$$
\begin{aligned}
\triangle(\alpha) & =\alpha \otimes \alpha+\beta \otimes \gamma, & \triangle(\beta) & =\alpha \otimes \beta+\beta \otimes \delta, \\
\triangle(\gamma) & =\gamma \otimes \alpha+\delta \otimes \gamma, & \triangle(\delta) & =\gamma \otimes \beta+\delta \otimes \delta, \\
\triangle(f(\lambda)) & =f(\lambda) \otimes 1, & \triangle(f(\rho)) & =1 \otimes f(\rho)
\end{aligned}
$$

Antipode

$$
S(\alpha)=\frac{F(\lambda)}{F(\rho)} \delta, \quad S(\beta)=-\frac{q^{-1}}{F(\mu)} \beta, \quad S(\gamma)=-q F(\lambda) \gamma, \quad S(\delta)=\alpha
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
Defined as the free algebra over the ring $\mathbb{C}[[\hbar]]$ with generators H and $X_{ \pm}$, such that
Product

$$
\left[H, X_{ \pm}\right]= \pm 2 X_{ \pm}, \quad\left[X_{+}, X_{-}\right]=\frac{q^{H}-q^{-H}}{q-q^{-1}}, \quad \text { where } q \equiv e^{\frac{\hbar}{2}}
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
Defined as the free algebra over the ring $\mathbb{C}[[\hbar]]$, with generators H and $X_{ \pm}$, such that

Product

$$
\left[H, X_{ \pm}\right]= \pm 2 X_{ \pm}, \quad\left[X_{+}, X_{-}\right]=\frac{q^{H}-q^{-H}}{q-q^{-1}}, \quad \text { where } q \equiv e^{\frac{(}{2}} .
$$

Coproduct

$$
\Delta(H)=H \otimes 1+1 \otimes H, \quad \triangle\left(X_{ \pm}\right)=q^{-\frac{H}{2}} \otimes X_{ \pm}+X_{ \pm} \otimes q^{\frac{H}{2}}
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
Defined as the free algebra over the ring $\mathbb{C}[[\hbar]]$ with generators H and $X_{ \pm}$, such that
Product

$$
\left[H, X_{ \pm}\right]= \pm 2 X_{ \pm}, \quad\left[X_{+}, X_{-}\right]=\frac{q^{H}-q^{-H}}{q-q^{-1}}, \quad \text { where } q \equiv e^{\frac{\hbar}{2}} .
$$

Coproduct

$$
\Delta(H)=H \otimes 1+1 \otimes H, \quad \triangle\left(X_{ \pm}\right)=q^{-\frac{H}{2}} \otimes X_{ \pm}+X_{ \pm} \otimes q^{\frac{H}{2}}
$$

Counit

$$
\epsilon(H)=\epsilon\left(X_{ \pm}\right)=0
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
Defined as the free algebra over the ring $\mathbb{C}[[\hbar]]$ with generators H and $X_{ \pm}$, such that
Product

$$
\left[H, X_{ \pm}\right]= \pm 2 X_{ \pm}, \quad\left[X_{+}, X_{-}\right]=\frac{q^{H}-q^{-H}}{q-q^{-1}}, \quad \text { where } q \equiv e^{\frac{\hbar}{2}}
$$

Coproduct

$$
\triangle(H)=H \otimes 1+1 \otimes H, \quad \triangle\left(X_{ \pm}\right)=q^{-\frac{H}{2}} \otimes X_{ \pm}+X_{ \pm} \otimes q^{\frac{H}{2}}
$$

Counit

$$
\epsilon(H)=\epsilon\left(X_{ \pm}\right)=0
$$

Antipode

$$
S(H)=-H, \quad S\left(X_{ \pm}\right)=-q^{ \pm 1} X_{ \pm}
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}\right)$ [Due to Rosengren]

Proposition [Rosengren (2002)].

$$
\begin{aligned}
& X_{+} \equiv q^{-1} \frac{q^{\lambda+1}-q^{-(\lambda+1)}}{q-q^{-1}} \beta, \quad X_{-}=-q \frac{q^{\rho}-q^{-\rho}}{q-q^{-1}} \gamma, \quad q^{H}=q^{\frac{1}{2}(\lambda-\rho)} \\
& \lambda, \rho \rightarrow-\infty \quad \text { but } \lambda-\rho \text { fixed }
\end{aligned}
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}^{*}\right)$ (reek \Longrightarrow Latin)

Product

$$
\begin{gathered}
b a=q a b, \quad c a=q a c, \quad b d q^{-1} d b, \quad c d=q^{-1} d c, \\
d a-a d=\left(q-q^{-1}\right) b c, \quad b c=c b
\end{gathered}
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}^{*}\right)$ (Greek \Longrightarrow Latin)

Product

$$
\begin{gathered}
b a=q a b, \quad c a=q a c, \quad b d q^{-1} d b, \quad c d=q^{-1} d c, \\
d a-a d=\left(q-q^{-1}\right) b c, \quad b c=c b
\end{gathered}
$$

Coproduct

$$
\begin{array}{ll}
\triangle(a)=a \otimes a+b \otimes c, & \triangle(b)=a \otimes b+b \otimes d, \\
\triangle(c)=c \otimes a+d \otimes c, & \triangle(d)=c \otimes b+d \otimes d
\end{array}
$$

$\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ as a deformation of $U_{q}\left(\mathfrak{s l}_{2}^{*}\right)$ (Greek $\Longrightarrow \underline{\text { Latin })}$

Product

$$
\begin{gathered}
b a=q a b, \quad c a=q a c, \quad b d q^{-1} d b, \quad c d=q^{-1} d c, \\
d a-a d=\left(q-q^{-1}\right) b c, \quad b c=c b
\end{gathered}
$$

Coproduct

$$
\begin{array}{ll}
\triangle(a)=a \otimes a+b \otimes c, & \triangle(b)=a \otimes b+b \otimes d, \\
\triangle(c)=c \otimes a+d \otimes c, & \triangle(d)=c \otimes b+d \otimes d
\end{array}
$$

Counit and Antipode

$$
\begin{array}{ll}
\epsilon(a)=1, & \epsilon(b)=0, \quad \epsilon(c)=0, \quad \epsilon(d)=1 \\
S(a)=d, & S(b)=-q b, \quad S(c)=-q^{-1} c, \quad S(d)=a
\end{array}
$$

Duality between $U_{q}\left(\mathfrak{s l}_{2}\right)$ and $U_{q}\left(\mathfrak{s l}_{2}^{*}\right)$

Proposition

The duality pairing between $U_{q}\left(\mathfrak{s l}_{2}\right)$ and $U_{q}\left(\mathfrak{s l}_{2}^{*}\right)$ is given by

$$
\left\{\begin{aligned}
\left\langle q^{ \pm \frac{H}{2}}, a\right\rangle & =q^{ \pm 1}, & & \left\langle q^{ \pm \frac{H}{2}}\right\rangle=q^{\mp \frac{1}{2}} \\
\left\langle X_{+}, b\right\rangle & =1, & & \left\langle X_{-}, c\right\rangle=1
\end{aligned}\right.
$$

The quantum double $D\left(U_{q}\left(\mathfrak{s L}_{2}\right)\right)$

The double construction

$$
D\left(U_{q}\left(\mathfrak{s l}_{2}\right)\right) \equiv U_{q}\left(\mathfrak{s u}_{2}\right) \bowtie C_{q}[S L(2, \mathbb{C})]^{\mathrm{op}} \cong U_{q}\left(\mathfrak{s u}_{2}\right) \bowtie U_{q}\left(\mathfrak{s u}_{2}^{*}\right)^{\mathrm{op}}
$$

The quantum double $D\left(U_{q}\left(\mathfrak{s L}_{2}\right)\right)$

The double construction

$$
D\left(U_{q}\left(\mathfrak{s l}_{2}\right)\right) \equiv U_{q}\left(\mathfrak{s u}_{2}\right) \bowtie C_{q}[S L(2, \mathbb{C})]^{\mathrm{op}} \cong U_{q}\left(\mathfrak{s u}_{2}\right) \bowtie U_{q}\left(\mathfrak{s u}_{2}^{*}\right)^{\mathrm{op}}
$$

Crossed products (involving H)

$$
\left[q^{\frac{H}{2}}, a\right]=0, \quad q^{\frac{H}{2}} b=q^{-1} b q^{\frac{H}{2}}, \quad q^{\frac{H}{2}} c=q c q^{\frac{H}{2}}, \quad\left[q^{\frac{H}{2}}, d\right]=0
$$

The quantum double $D\left(U_{q}\left(\mathfrak{s L}_{2}\right)\right)$

The double construction

$$
D\left(U_{q}\left(\mathfrak{s l}_{2}\right)\right) \equiv U_{q}\left(\mathfrak{s u}_{2}\right) \bowtie C_{q}[S L(2, \mathbb{C})]^{\mathrm{op}} \cong U_{q}\left(\mathfrak{s u}_{2}\right) \bowtie U_{q}\left(\mathfrak{s u}_{2}^{*}\right)^{\mathrm{op}}
$$

Crossed products (involving H)

$$
\left[q^{\frac{H}{2}}, a\right]=0, \quad q^{\frac{H}{2}} b=q^{-1} b q^{\frac{H}{2}}, \quad q^{\frac{H}{2}} c=q c q^{\frac{H}{2}}, \quad\left[q^{\frac{H}{2}}, d\right]=0
$$

Crossed products (involving $X_{ \pm}$)

$$
\begin{array}{rlrl}
X_{-a} & =q^{-1} a X_{-}+b q^{\frac{H}{2}}, & & {\left[X_{-}, b\right]=0,} \\
{\left[X_{-}, c\right]} & =q\left(q^{\frac{H}{2}} d-q^{-\frac{H}{2}} a\right), & d X_{-}=q^{-1} X_{-} d+q^{\frac{H}{2}} b, \\
a X_{+} & =q X_{+} a+q^{-\frac{H}{2}} c, & {\left[X_{+}, c\right]=0,} \\
{\left[X_{+}, b\right]} & =q^{-1}\left(q^{\frac{H}{2}} a-q^{-\frac{H}{2}} d\right), & X_{+} d=q d X_{+}+c q^{\frac{H}{2}}
\end{array}
$$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s L}_{2}\right)$ is self-dual [Koelink, Van Norden, Rosengren (2003)]

Proposition.

$$
\begin{aligned}
\left\langle X_{+},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle & =\left(\begin{array}{cc}
0 & F(\lambda-1) \\
0 & 0
\end{array}\right), \quad\left\langle X_{-},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{F(\lambda)} & 0
\end{array}\right) \\
\left\langle K^{+},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle & \xlongequal{\prime}=\left(\begin{array}{cc}
q^{\frac{1}{2}} T_{-1} & 0 \\
0 & q^{-\frac{1}{2}} T_{+1}
\end{array}\right), \quad \lambda, p \longrightarrow-\infty \\
\left\langle K^{-},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle & \xlongequal{=}\left(\begin{array}{cc}
q^{-\frac{1}{2}} T_{-1} & 0 \\
0 & q^{\frac{1}{2}} T_{+1}
\end{array}\right)
\end{aligned}
$$

The Hopf algebroid $\mathfrak{F}_{q}\left(\mathfrak{s l}_{2}\right)$ is self-dual [Koelink, Van Norden, Rosengren (2003)]

Proposition.

$$
\begin{aligned}
\left\langle X_{+},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle & =\left(\begin{array}{cc}
0 & F(\lambda-1) \\
0 & 0
\end{array}\right), \quad\left\langle X_{-},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{F(\lambda)} & 0
\end{array}\right) \\
\left\langle K^{+},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle & =\left(\begin{array}{cc}
q^{\frac{1}{2}} T_{-1} & 0 \\
0 & q^{-\frac{1}{2}} T_{+1}
\end{array}\right), \\
\left\langle K^{-},\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\rangle & =\left(\begin{array}{cc}
q^{-\frac{1}{2}} T_{-1} & 0 \\
0 & q^{\frac{1}{2}} T_{+1}
\end{array}\right)
\end{aligned}
$$

Conclusion 2

The Hopf algebroid $\mathcal{F}_{q}\left(\mathfrak{s l}_{2}\right)$ could be realized as a deformation/extension of the quantum group $D\left(U_{q}\left(\mathfrak{s l}_{2}\right)\right)$.

IV. Enlarging the structure of quantum symmetries: κ-Poincaré

κ-Poincaré Hopf algebra (Product and Coproduct)

The κ-Poincaré Hopf algebra $U\left(\mathcal{P}_{\kappa}\right)$ is generated by the Lorentz generators N_{μ} and momentum generators p_{μ}, such that

κ-Poincaré Hopf algebra (Product and Coproduct)

The κ-Poincaré Hopf algebra $U\left(\mathcal{P}_{\kappa}\right)$ is generated by the Lorentz generators N_{μ} and momentum generators p_{μ}, such that

Product

$$
\begin{aligned}
{\left[p_{i}, p_{j}\right] } & =0, \\
{\left[N_{0}, p_{0}\right] } & =0, \quad\left[M, N_{1}\right]=N_{2}, \quad\left[N_{0}, N_{2}\right]=-N_{1}, \quad\left[N_{1}, N_{2}\right]=-N_{0}, \\
{\left[N_{i}, p_{j}\right] } & =\frac{i}{2} \epsilon_{i j} e^{-\lambda p_{0}}\left(\frac{e_{i j} p_{i},}{2 \lambda p_{0}}-1\right. \\
\lambda & {\left.\left[N_{i}, p_{0}\right]=-i \epsilon_{i j} p_{j} e^{-\lambda p_{0}}\right) }
\end{aligned}
$$

κ-Poincaré Hopf algebra (Product and Coproduct)

The κ-Poincaré Hopf algebra $U\left(\mathcal{P}_{\kappa}\right)$ is generated by the Lorentz generators N_{μ} and momentum generators p_{μ}, such that

Product

$$
\left\{\begin{array}{lll}
{\left[p_{i}, p_{j}\right]=0,} & {\left[M, N_{1}\right]=N_{2},} & {\left[N_{0}, N_{2}\right]=-N_{1}, \quad\left[N_{1}, N_{2}\right]=-N_{0},} \\
{\left[N_{0}, p_{0}\right]=0,} & {\left[N_{0}, p_{i}\right]=i \epsilon_{i j} p_{i},} & {\left[N_{i}, p_{0}\right]=-i \epsilon_{i j} p_{j} e^{-\lambda p_{0}}} \\
{\left[N_{i}, p_{j}\right]=\frac{i}{2} \epsilon_{i j} e^{-\lambda p_{0}}\left(\frac{e^{2 \lambda p_{0}}-1}{\lambda}-\lambda \vec{p}^{2}\right)}
\end{array}\right.
$$

Coproduct

$$
\begin{aligned}
& \triangle\left(p_{0}\right)=p_{0} \otimes 1+1 \otimes p_{0}, \quad \triangle\left(p_{i}\right)=p_{i} \otimes 1+e^{\lambda p_{0}} \otimes p_{i} \\
& \triangle\left(N_{i}\right)=1 \otimes N_{i}+N_{i} \otimes e^{-\lambda p_{0}}+\lambda N_{0} \otimes p_{i} e^{-\lambda p_{0}}, \\
& \triangle\left(N_{0}\right)=1 \otimes N_{0}+N_{0} \otimes 1
\end{aligned}
$$

κ-Poincaré Hopf algebra (Counit and Antipode)

Counit

$$
\epsilon\left(p_{\mu}\right)=\epsilon\left(N_{\mu}\right)=0
$$

κ-Poincaré Hopf algebra (Counit and Antipode)

Counit

$$
\epsilon\left(p_{\mu}\right)=\epsilon\left(N_{\mu}\right)=0
$$

Antipode

$$
\begin{array}{ll}
S\left(p_{0}\right)=-p_{0}, & S\left(p_{i}\right)=-p_{i} e^{-\lambda p_{0}} \\
S\left(N_{0}\right)=-N, & S\left(N_{i}\right)=-e^{-\lambda p_{0}}\left(N_{i}+\lambda N p_{i}\right)
\end{array}
$$

The Heisenberg Hopf algebroid \mathcal{H}

The Heisenberg algebra \mathcal{H} (+Hopf algebroid structure)

$$
\left\{\left[x_{\mu}, x_{\nu}\right]=\left[p_{\mu}, p_{\nu}\right]=0, \quad\left[p_{\mu}, x_{\nu}\right]=-i \eta_{\mu \nu}\right.
$$

can be equipped with a Hopf algebroid structure via

$$
\left\{\begin{array}{rr}
\tilde{\triangle}_{0}\left(p_{\mu}\right)=p_{\mu} \otimes 1+1 \otimes p_{\mu}, & \tilde{\triangle}_{0}\left(x_{\mu}\right)=x_{\mu} \otimes 1 \\
\tilde{\epsilon}_{0}(h)=h \triangleright 1, \quad \tilde{S}_{0}\left(p_{\mu}\right)=-p_{\mu}, & \tilde{S}_{0}\left(x_{\mu}\right)=-x_{\mu}
\end{array}\right.
$$

The Heisenberg Hopf algebroid \mathcal{H}

The Heisenberg algebra \mathcal{H} (+ Hopf algebroid structure)

$$
\left[x_{\mu}, x_{\nu}\right]=\left[p_{\mu}, p_{\nu}\right]=0, \quad\left[p_{\mu}, x_{\nu}\right]=-i \eta_{\mu \nu}
$$

can be equipped with a Hopf algebroid structure via

$$
\begin{gathered}
\tilde{\triangle}_{0}\left(g_{\mu}\right)=p_{\mu} \otimes 1+1 \otimes p_{\mu}, \quad \\
\tilde{\epsilon}_{0}\left(\tilde{\triangle}_{0}\left(\gamma_{\mu}\right)=h \triangleright 1, \quad \quad \tilde{S}_{0}\left(p_{\mu}\right)=-p_{\mu}, \quad\left(\tilde{S}_{0}\left(x_{\mu}\right)=-x_{\mu},\right.\right.
\end{gathered}
$$

Algebra exercise!

We can recover the algebra part of $U\left(\mathcal{P}_{\kappa}\right)$ from \mathcal{H} using
with $Z=e^{\lambda p_{0}}$.

Recovering $U\left(\mathcal{P}_{k}\right)$ from the Heisenberg Hopf algebroid

Proposition [Juríc, Meljanac, Strajn, Pachol (2013)]

The Hopf algebra structure of $U\left(\mathcal{P}_{\kappa}\right)$ could be recover from the Hopf algebroid structure over \mathcal{H} bv twisting it with

$$
\mathcal{F}=\exp \left(-i \lambda p_{0} \otimes x_{k} p_{k}\right)
$$

i.e.

$$
\begin{aligned}
& \triangle(\cdot)=\mathcal{F} \tilde{\triangle}_{0}(\cdot) \mathcal{F}, \quad \epsilon \xlongequal[=]{\tilde{\epsilon}_{0}} \quad \text { and } \quad S(\cdot)=\chi \tilde{S}_{0}(\cdot) \chi^{-1} \\
& \chi=\exp \left(i \lambda p_{0} x_{i} p_{i}\right) .
\end{aligned}
$$

Recovering $U\left(\mathcal{P}_{k}\right)$ from the Heisenberg Hopf algebroid

Proposition [Juríc, Meljanac, Strajn, Pachol (2013)]

The Hopf algebra structure of $U\left(\mathcal{P}_{\kappa}\right)$ could be recover from the Hopf algebroid structure over \mathcal{H} by twisting it with

$$
\mathcal{F}=\exp \left(-i \lambda p_{0} \otimes x_{k} p_{k}\right)
$$

i.e.

$$
\triangle(\cdot)=\mathcal{F} \tilde{\triangle}_{0}(\cdot) \mathcal{F}, \quad \epsilon=\tilde{\epsilon}_{0} \quad \text { and } \quad S(\cdot)=\chi \tilde{S}_{0}(\cdot) \chi^{-1}
$$

where $\chi=\exp \left(i \lambda p_{0} x_{i} p_{i}\right)$.

Conclusion 3

The Heisenberg Hopf algebroid \mathcal{H} is a (twist) deformation of the quantum group $U\left(\mathcal{P}_{\kappa}\right)$

Main References

(1) Lukierski, J., Škoda, Z. and Woronowicz, M. On Hopf algebroid structure of κ-deformed Heisenberg algebra. Phys. Atom. Nuclei 80, 576-585 (2017).
(2) Majid, S. and Osei, P.K. Quasitriangular structure and twisting of the 3D bicrossproduct model. J. High Energ. Phys. 2018, 147 (2018).
(3) Rosengren, H. Duality and Self-Duality for Dynamical Quantum Groups. Algebras and Representation Theory 7, 363-393 (2004).
(9) Koelink.E and van Norden.Y , Pairings and actions for dynamical quantum groups, Advances in Mathematics, Volume 208, Issue 1, 1-39 (2007).

Thank You!!!
 Any Questions? Please ask!

